DOI QR코드

DOI QR Code

Characteristics of Friction Behavior of Ceramic Friction Materials according to Surface Materials

  • Ji-Hun Park (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Jung-Woo Lee (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Jong-Won Kwark (Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Woo-Jin Han (Esco RTS Co., Ltd.) ;
  • Oneil Han (Hyundai Engineering & Construction)
  • 투고 : 2023.11.30
  • 심사 : 2023.12.22
  • 발행 : 2023.12.30

초록

Friction material, an integral constituent of bearing supports, facilitates frictional interactions between two components. Polytetrafluoroethylene (PTFE), a commonly employed friction material in bearing supports, has assessed resultant friction equilibrium. Nonetheless, protracted utilization diminishes frictional performance as the lubricating agent is progressively depleted. Friction materials can affect the entire structural system. Hence, this study applied ceramic material as a friction material due to its high strength, low friction, and low deformation. The frictional behavior was investigated using a cyclic friction test, considering various friction materials as the primary design variables and examining their covariance in cyclic frictional movements. The results substantiated that the ceramic friction material yielded a low variance and friction coefficients in cyclic frictional movements.

키워드

과제정보

This study was conducted under the KICT Research Program (project no. 20230136-001, Development of sliding pads for bridge bearings with improved durability using ceramics) funded by the Ministry of Science and ICT.

참고문헌

  1. AASHTO, B.D.S. (2010). American Association of State Highway and Transportation Officials, Washington, DC, 4.
  2. Adamov, A.A., Kamenskikh, A.A., Pankova, A.P. (2022). Influence analysis of the antifriction layer materials and thickness on the contact interaction of spherical bearings elements, Lubricants, 10(2), 30.
  3. Choi, E., Choi, Y., Lee, J., Jang, Y., Lee, S. (2019). Assessment of friction of ep frictional materials used for spherical bearings of railway bridges, Journal of Korean Society of Steel Construction, 31(4), 293-299 [in Korean]. https://doi.org/10.7781/kjoss.2019.31.4.293
  4. Dong, S., Chung, K.H., Lee, K.S. (2011). Effect of surface roughness of counterface on tribological characteristics of PTFE and UHMWPE, Tribology and Lubricants, 27(6), 293-301 [in Korean]. https://doi.org/10.9725/kstle.2011.27.6.293
  5. Frantsen, J.E., Mathiesen, T. (2009). Specifying stainless steel surfaces for the brewery, dairy and pharmaceutical sectors, Nace Corrosion, NACE-09373.
  6. Feng, C., Zhang, D., Chen, K. (2019). In situ microscopic observations of dynamic viscoelastic contact and deformation at a friction interface, Materials Express, 9(3), 235-244. https://doi.org/10.1166/mex.2019.1490
  7. Han, O., Kwark, J.W., Lee, J.W., Han, W.J. (2023). Analytical study on the frictional behavior of sliding surfaces depending on ceramic friction materials, Applied Sciences, 13(1), 234.
  8. Joh, C., Yoon, H., Kim, Y.J. (2006). Accumulated sliding distance of the sliding element in the bridge bearing, Korean Society of Civil Engineers, 1320-1323.
  9. Kamenskih, A.A., Trufanov, N.A. (2013). Numerical analysis of the stress state of a spherical contact system with an interlayer of antifriction material, Comput. Contin. Mech, 6, 54-61. https://doi.org/10.7242/1999-6691/2013.6.1.7
  10. Lee, K.H., Park, D.B., Jang, K.S., Sim, K.C., Choi, J.S. (2017). Evaluate the friction coefficient of friction pendulum bearing applied new friction material, Korean Society of Civil Engineers, 1353-1354.
  11. Mnif, R., Ben Jemaa, M.C., Kacem, N.H., Elleuch, R. (2013). Impact of viscoelasticity on the tribological behavior of PTFE composites for valve seals application, Tribology transactions, 56(5), 879-886. https://doi.org/10.1080/10402004.2013.801099
  12. Oh, S.T., Lee, D.J., Yeon, J.S., Lee, H.J., Jeong, S.H. (2013). Dynamic behaviors of bearings of the two-span continuous PSC box bridge with 40 m span for KTX vehicle, Proceedings of the 25th Annual Conference, The Korean Society for Railway, 130-132 [in Korean].
  13. Oh, J., Jang, C., Kim, J.H. (2015). A study on the characteristics of bridge bearings behavior by finite element analysis and model test, Journal of Vibroengineering, 17(5), 2559-2571.
  14. Oh, S.T., Lee, D.J., Jun, S.M., Jeong, S.H. (2016). A long-term friction test of bridge bearings considering running speed of next generation train, Journal of the Korea Institute for Structural Maintenance and Inspection, 20(2), 34-39 [in Korean]. https://doi.org/10.11112/jksmi.2016.20.2.034
  15. Pavlenko, V.I., Bondarenko, G.G., Tarasov, D.G., Edamenko, O.D. (2013). Gamma modification of radiation-resistant fluoroplastic composite, Inorganic Materials: Applied Research, 4, 389-393. https://doi.org/10.1134/S2075113313050109
  16. Standard PN-EN ISO 4288. (1997). Geometrical Product Specifications (GPS)-Surface Texture: Profile Method-Rules and Procedures for the Assessment of Surface Texture.
  17. Specifications, K.H.B. (2010). Korean Ministry of Construction and Transportation.
  18. Wei, W., Yuan, Y., Igarashi, A., Zhu, H., Luo, K. (2020). Generalized hyper-viscoelastic modeling and experimental characterization of unfilled and carbon black filled natural rubber for civil structural applications, Construction and Building Materials, 253, 119211.
  19. Wang, H., Sun, A., Qi, X., Dong, Y., Fan, B. (2021). Experimental and analytical investigations on tribological properties of PTFE/AP composites, Polymers, 13(24), 4295.
  20. Yang, Y., Zhang, Y., Ju, J. (2021). Study on the mechanical properties of a type of spherical bearing, Journal of Theoretical and Applied Mechanics, 59(4), 539-550. https://doi.org/10.15632/jtam-pl/141305
  21. Zhang, Y., Xu, S., Zhang, Q., Zhou, Y. (2015). Experimental and theoretical research on the stress-relaxation behaviors of PTFE coated fabrics under different temperatures, Advances in Materials Science and Engineering, 2015, 319473.