DOI QR코드

DOI QR Code

팽창재와 팽윤제가 혼입된 고로슬래그 콘크리트 Mock-up의 균열 저감 성능평가

Mock-up Crack Reduction Performance Evaluation of Blast Furnace Slag Concrete Mixed with Expansive and Swelling Admixture

  • 윤상혁 (한국건설기술연구원 건축연구본부) ;
  • 최원영 (한국건설기술연구원 건설시험인증본부) ;
  • 전찬수 (한국건설기술연구원 건설시험인증본부)
  • Sang-Hyuck Yoon (Korea Institute of Civil engineering and Building Technology) ;
  • Won-Young Choi (Korea Institute of Civil engineering and Building Technology) ;
  • Chan-Soo Jeon (Korea Institute of Civil engineering and Building Technology)
  • 투고 : 2023.12.05
  • 심사 : 2023.12.20
  • 발행 : 2023.12.30

초록

본 연구는 팽창성 및 팽윤성 혼화제를 혼입한 고로슬래그 콘크리트의 균열 저감 성능 평가를 목적으로 한다. 기본 성능 실험으로 고로슬래그미분말(BFS), 칼슘설포알루미네이트(CSA), 벤토나이트, 하이드록시프로필 메틸셀룰로오스(HPMC) 등 다양한 혼입물을 사용하여 수행한 결과 벤토나이트가 HPMC에 비해 우수한 성능을 나타내었다. 이후, 혼입률에 따른 균열 및 건조수축 평가를 위해 MOCK-UP 테스트를 실시하였다. 그 결과, 벤토나이트와 소량의 인산칼슘을 첨가하였을 때 건조수축이 감소되어 균열이 저감 되었다. 특히, 30 %의 BFS, 1 %의 벤토나이트, 1 %의 인산칼슘으로 구성된 시멘트 혼합물이 균열이 없는 최적의 성능을 보였다. BFS 콘크리트가 지속적인 팽창 활동에 의하여 수축을 보상하는데 기여할 것으로 판단되며 현장 적용에 사용될 수 있을 것이다.

The purpose of this study is to evaluate the crack reduction performance of blast furnace slag concrete mixed with expansive and swelling admixtures. As a basic performance test, various ingredients such as blast furnace slag fine powder (BFS), calcium sulfoaluminate (CSA), bentonite, and hydroxypropyl methyl cellulose (HPMC) were used, and the results showed that bentonite showed superior performance compared to HPMC. Afterwards, a MOCK-UP test was conducted to evaluate cracking and drying shrinkage according to the mixing ratio. As a result, when bentonite and a small amount of calcium phosphate were added, drying shrinkage was reduced and cracking was reduced. In particular, a cement mixture consisting of 30 % BFS, 1 % bentonite, and 1 % calcium phosphate showed optimal crack-free performance. It is believed that BFS concrete will contribute to compensating for shrinkage through continuous expansion activity and can be used for field applications.

키워드

과제정보

본 연구는 2023년도 한국건설기술연구원 평가인증사업의 일환으로 수행된 연구임.(NO. 20230062-001)

참고문헌

  1. Gong, D.G., Kim, J.H., Chung, C.W. (2021). Analysis of basic properties for utilizing recycled cement containing calcium phosphate as a solidifying material for radioactive waste disposal, Journal of the Korea Concrete Institute, 33(1), 405-406 [in Korean].
  2. Ha, J.S., Lee, S.C., Kim, S.D., Kim, W.J., Lim, N.K., Jung, S.J. (2010). A study on the shrinkage characteristics of 150 MPa class ultra-high strength concrete according to the incorporation of expansion materials and self-shrinkage reducing agents, Journal of the Architectural Institute of Korea, 30(1), 257-258 [in Korean].
  3. Han, C.G., Kim, S.W., Koh, K.T., Pei, Z.L. (2003). Properties on the shrinkage of high performance concrete using expansive additive and shrinkage reducing agent, Journal of the Korea Concrete Institute, 15(6), 785-793 [in Korean]. https://doi.org/10.4334/JKCI.2003.15.6.785
  4. Han, M.C. (2007). Estimation of the autogenous shrinkage of the high performance concrete containing expansive additive and shrinkage reducing agent, Journal of the Korea Institute of Building Construction, 7(3), 123-130 [in Korean]. https://doi.org/10.5345/JKIC.2007.7.3.123
  5. Ko, J.W., Kim, Y.J., Min, K.S (2016). The multi-functional crack reducing concrete technology for control of shrinkage cracks in concrete, Magazine of the Korea Concrete Institute, 28(6), 37-41.
  6. Ko, J.W., Lee, E.B., Min, K.S. (2018). Development and application of smart crack reducing concrete, Magazine of Recycled Construction Resources Institute, 13(2), 49-55 [in Korean].
  7. KS F 2563. (2020). Ground Granulated Blast - Furnace Slag for Use in Concrete, Korean Standards and Certifications. Korea [in Korean].
  8. Lee, D.G., Han, H.S., Jung, Y.W. (2016). Chemical admixture technology for reducing shrinkage of concrete, Magazine of the Korea Concrete Institute, 28(6), 31-36 [in Korean].
  9. MOLIT. (2021). Investigation of Defects in Apartment Complexes, Calculation of Repair Costs and Criteria for Determining Defects, 7(1) [in Korean].
  10. Park, H., Kim, H.Y., Jung, S.J. (2009). A study on the autogenous shrinkage control of ultra-high-strength concrete, Journal of the Architectural Institute of Korea, 25(12), 129-136 [in Korean].
  11. Park, S.G. (2009). A study on the expansion model of cement paste used ettringite-gypsum type expansive additive, Journal of the Architectural Institute of Korea, 25(7), 87-94.
  12. Ryu, D.W., Kim, W.J., Yang, W.H., Park, D.C. (2012). An experimental study on the carbonation and drying shrinkage of concrete using high volumes of ground granulated blast-furnace slag, Journal of the Korea Institute of Building Construction, 12(4), 393-400 [in Korean]. https://doi.org/10.5345/JKIBC.2012.12.4.393
  13. Shin, J.H., Choi, H.G., Hong, J.H., Baek, H.S., Seo, K.H., Park, M.Y. (2019). A study on basic properties of concrete using carbon nanomaterials, Journal of the Korea Concrete Institute, 31(2), 561-562 [in Korean].
  14. Song, T.H., Yoon, S.H., Park, J.S., Lee, S.H. (2013). Development of Long-Life Concrete for Structures on Artificial Ground, Korea Institute of Civil Engineering and Technology [in Korean].
  15. Yang, C.J. (2017). Mechanical Properties and Applicability of Concrete Depending on Substitution of Blast Furnace Slag, Ph.D Thesis, Chosun University, Korea [in Korean].
  16. Yoon, S.H. (2016). Shrinkage and Crack Reduction Characteristics of Blast-Furnace Slag Concrete mixed with Expansive and Swelling Agents, Ph.D Thesis, Dankook University, Korea [in Korean].
  17. Yoon, S.H., Choi, W.Y., Jeon, C.S. (2022). Hydration properties of mixed cement containing ground‑granulated blast‑furnace slag and expansive admixture, Journal of Material Cycles and Waste Management, 24(5), 1878-1892. https://doi.org/10.1007/s10163-022-01456-z