DOI QR코드

DOI QR Code

The Impact of N-Ion Implantation on Deep-Level Defects and Carrier Lifetime in 4H-SiC SBDs

N-이온주입이 4H-SiC SBDs의 깊은 준위 결함 및 소수 캐리어 수명에 미치는 영향

  • Myeong-cheol Shin (Dept. of Electronics Engineering, Kwangwoon University) ;
  • Geon-Hee Lee (Dept. of Electronics Engineering, Kwangwoon University) ;
  • Ye-Hwan Kang (Dept. of Electronics Engineering, Kwangwoon University) ;
  • Jong-Min Oh (Dept. of Electronics Engineering, Kwangwoon University) ;
  • Weon Ho Shin (Dept. of Electronics Engineering, Kwangwoon University) ;
  • San-Mo Koo (Dept. of Electronics Engineering, Kwangwoon University)
  • Received : 2023.10.23
  • Accepted : 2023.12.28
  • Published : 2023.12.31

Abstract

In this study, the impact of Nitrogen implantation process on deep-level defects and lifetime in 4H-SiC Epi surfaces was comparatively analyzed. Deep Level Transient Spectroscopy (DLTS) and Time Resolved Photoluminescence (TR-PL) were employed to measure deep-level defects and carrier lifetime. As-grown Schottky Barrier Diodes (SBDs) exhibited energy levels at 0.16 eV, 0.67 eV, and 1.54 eV, while for implantation SBD, defects at 0.15 eV were observed. This indicates a reduction in defects associated with energy levels Z1/2 and EH6/7, known as lifetime killers, as impurities from nitrogen implantation replace titanium and carbon vacancies.

본 연구에서는 4H-SiC Epi Surface에 Nitrogen implantation 공정이 깊은준위결함과 lifetime에 미치는 영향을 비교분석하였다. Deep Level Transient Spectroscopy (DLTS)와 Time Resolved Photoluminescence (TR-PL)을 사용하여 깊은준위결함과 carrier lifetime을 측정하였다. As-grown SBD에서는 0.16 eV, 0.67 eV, 1.54 eV 에너지 준위와 implantation SBD의 경우 0.15 eV 준위에서의 결함을 측정되었으며, 이는 nitrogen implantation으로 불순물이 titanium 및 carbon vacancy를 대체됨으로 lifetime killer로 알려진 Z1/2, EH6/7 준위 결함은 감소하였다.

Keywords

Acknowledgement

This work was supported by the Kwangwoon Univeristy in 2023, the Korea Institute for Advancement of Technology (KIAT) (P0012451) funded by the the National Research Foundation (NRF) (RS-2023-00266246), and the present research has been conducted by the excellent researcher support project of Kwangwoon University in 2023

References

  1. Son, Woo-Young, et al. "Al Implantation and Post Annealing Effects in n-Type 4H-SiC," Journal of Nanoelectronics and Optoelectronics 15.7 (2020). DOI: 10.1166/jno.2020.2818
  2. J. Yang, S. Ahn, F. Ren, S. J. Pearton, S. Jang, and A. Kuramata, IEEE Electron Device Lett., 38, 906 (2017). DOI: 10.1109/LED.2017.2774118
  3. Lee, Jinseon, Tai Young Kang, and Kyung Hwan Kim. "Electrical Characteristics of the SiC SBD Prepared by using the Facing Targets Sputtering Method," Journal of the Semiconductor & Display Technology 14.1 (2015).
  4. Y. J. Lee, S. Cho, J. H. Seo, S. J. Min, J. I. An, J. M. Oh, S. M. Koo, and D. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 31, 367 (2018).
  5. Byun, Dong-Wook, et al. "Deep Level Defect Transient Spectroscopy Analysis of 4H-SiC SBD and JBS Diodes," Journal of the Korean Institute of Electrical and Electronic Material Engi-neers 34.3 (2021): 214-219.
  6. S. J. Min, M. C. Shin, N. T. Nguyen, J. M. Oh, and S. M. Koo Materials 13, 445 (2020).
  7. Harada, Shunta, et al. "Suppression of stacking fault expansion in a 4H-SiC epitaxial layer by proton irradiation," Scientific Reports 12.1 (2022): 13542.
  8. Dalibor, Thomas, et al. "Electrical properties of the titanium acceptor in silicon carbide," Physical Review B 55.20 (1997): 13618. DOI: 10.1103/PhysRevB.55.13618
  9. Dalibor, T., et al. "Deep defect centers in silicon carbide monitored with deep level transient spectroscopy," physica status solidi (a) 162.1 (1997): 199-225. https://doi.org/10.1002/1521-396X(199707)162:1<199::AID-PSSA199>3.0.CO;2-0
  10. Zippelius, Bernd, Jun Suda, and Tsunenobu Kimoto. "High temperature annealing of n-type 4H-SiC: Impact on intrinsic defects and carrier lifetime," Journal of Applied Physics 111.3 (2012). DOI: 10.1063/1.3681806
  11. Basile, A. F., S. Dhar, and P. M. Mooney. "Electron trapping in 4H-SiC MOS capacitors fabricated by pre-oxidation nitrogen implantation," Journal of Applied Physics 109.11 (2011). DOI: 10.1063/1.3583574
  12. Kato, Masashi, Atsushi Yoshida, and Masaya Ichimura. "Estimation of surface recombination velocity from thickness dependence of carrier lifetime in n-type 4H-SiC epilayers," Japanese Journal of Applied Physics 51.2S (2012): 02BP12. DOI: 10.1143/JJAP.51.02BP12
  13. Kato, Masashi, et al. "Excess carrier lifetime in a Bulk p-type 4H-SiC wafer measured by the microwave photoconductivity decay method," Japanese Journal of Applied Physics 46.8R (2007): 5057. DOI: 10.1143/JJAP.46.5057
  14. Hiyoshi, T. and Kimoto, T., 2009. "Reduction of deep levels and improvement of carrier lifetime in n-type 4H-SiC by thermal oxidation," Applied Physics Express, 2(4), p.041101. DOI: 10.1143/APEX.2.041101