DOI QR코드

DOI QR Code

Fatty acids composition and lipolysis of Parmigiano Reggiano PDO cheese: effect of the milk cooling temperature at the farm

  • Received : 2022.03.02
  • Accepted : 2022.05.23
  • Published : 2023.01.01

Abstract

Objective: The aim was to study the influence of cooling milk at 9℃ at the farm versus keeping it at 20℃ on Parmigiano Reggiano cheese lipolysis. Methods: A total of six cheesemaking trials (3 in winter and 3 in summer) were performed. In each trial, milk was divided continuously into two identical aliquots, one of which was kept at 9℃ (MC9) and the other at 20℃ (MC20). For each trial and milk temperature, vat milk (V-milk) and the resulting 21 month ripened cheese were analysed. Results: Fat and dry matter and fat/casein ratio were lower in MC9 V-milk (p≤0.05) than in MC20. Total bacteria, mesophilic lactic acid and psychrotrophic and lipolytic bacteria showed significant differences (p≤0.05) between the two V-milks. Regarding cheese, fat content resulted lower and crude protein higher (p≤0.05) both in outer (OZ) and in inner zone (IZ) of the MC9 cheese wheels. Concerning total fatty acids, the MC9 OZ had a lower concentration of butyric, capric (p≤0.05) and medium chain fatty acids (p≤0.05), while the MC9 IZ had lower content of butyric (p≤0.05), caproic (p≤0.01) and short chain fatty acids (p≤0.05). The levels of short chain and medium chain free fatty acids (p≤0.05) were lower and that of long chain fatty acids (p≤0.05) was higher in MC9 OZ cheese. The principal component analysis of total and free fatty acids resulted in a clear separation among samples by seasons, whereas slight differences were observed between the two different milk temperatures. Conclusion: Storing milk at 9℃ at the herd affects the chemical composition of Parmigiano Reggiano, with repercussion on lipolysis. However, the changes are not very relevant, and since the cheese can present a high variability among the different cheese factories, such changes should be considered within the "normal variations" of Parmigiano Reggiano chemical characteristics.

Keywords

References

  1. Franceschi P, Malacarne M, Formaggioni P, Faccia M, Summer A. Effects of milk storage temperature at the farm on the characteristics of Parmigiano Reggiano cheese: chemical composition and proteolysis. Animals 2021;11:879. https://doi.org/10.3390/ani11030879
  2. Council Regulation (EU) No PDO-IT-02202 of 14 November 2016 [Internet]. Off J European Union of 13 April 2018, C132/17-19; 2016 [cited 2021 Feb 16]. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018XC0413(01)
  3. Gatti M, Bottari B, Lazzi C, Neviani E, Mucchetti G. Microbial evolution in raw-milk, long-ripened cheeses produced using undefined natural whey starters: Invited review. J Dairy Sci 2014;97:573-91. https://doi.org/10.3168/jds.2013-7187
  4. Summer A, Franceschi P, Formaggioni P, Malacarne M. Characteristics of raw milk produced by free-stall or tie-stall cattle herds in the Parmigiano-Reggiano cheese production area. Dairy Sci Technol 2014;94:581-90. https://doi.org/10.1007/s13594-014-0181-6
  5. Emmons DB, Dube C, Modler HW. Transfer of protein from milk to cheese. J Dairy Sci 2003;86:469-85. https://doi.org/10.3168/jds.S0022-0302(03)73626-1
  6. Formaggioni P, Summer A, Malacarne M, Franceschi P, Mucchetti G. Italian and Italian-style hard cooked cheeses: Predictive formulas for Parmigiano-Reggiano 24-h cheese yield. Int Dairy J 2015;51:52-8. https://doi.org/10.1016/j.idairyj.2015.07.008
  7. Somers J, O'Brien B, Meany W, Kelly AL. Heterogeneity of proteolytic enzyme activities in milk samples of different somatic cell count. J Dairy Res 2003;70:45-50. https://doi.org/10.1017/S0022029902005988
  8. Franceschi P, Summer A, Sandri S, Formaggioni P, Malacarne M, Mariani P. Effects of the full cream milk somatic cell content on the characteristics of vat milk in the manufacture of Parmigiano-Reggiano cheese. Vet Res Commun 2009;33:281-3. https://doi.org/10.1007/s11259-009-9296-2
  9. Franceschi P, Faccia M, Malacarne M, Formaggioni P, Summer A. Quantification of cheese yield reduction in manufacturing Parmigiano Reggiano from milk with non-compliant somatic cells count. Foods 2020;9:212-21. https://doi.org/10.3390/foods9020212
  10. Franciosi E, Settanni L, Cologna N, Cavazza A, Poznanski E. Microbial analysis of raw cows' milk used for cheese-making: influence of storage treatments on microbial composition and other technological traits. World J Microbiol Biotechnol 2011;27:171-81. https://doi.org/10.1007/s11274-010-0443-2
  11. Franceschi P, Brasca M, Malacarne M, et al. Effects of the cooling temperature at the farm on milk maturation and cheesemaking process in the manufacture of Parmigiano Reggiano PDO cheese. Animals 2021;11:2835. https://doi.org/10.3390/ani11102835
  12. Franceschi P, Malacarne M, Formaggioni P, Summer A. Quantification of the effect of the cattle breed on milk cheese yield: comparison between Italian Brown Swiss and Italian Friesian. Animals 2020;10:1331. https://doi.org/10.3390/ani10081331
  13. Collins YF, McSweeney PLH, Martin G, Wilkinson MG. Lipolysis and free fatty acid catabolism in cheese: a review of current knowledge. Int Dairy J 2003;13:841-66. https://doi.org/10.1016/S0958-6946(03)00109-2
  14. Hantsis-Zacharov E, Halpern M. Culturable psychrotrophic bacterial communities in raw milk and their proteolytic and lipolytic traits. Appl Environ Microbiol 2007;73:7162-8. https://doi.org/10.1128/AEM.00866-07
  15. Deeth HC, Touch V. Methods for detecting lipase activity in milk and milk products. Aust J Dairy Technol 2000;55:153-68.
  16. Decimo M, Cabeza MC, Ordonez JA, De Noni I, Brasca M. Volatile organic compounds associated with milk spoilage by psychrotrophic bacteria. Int J Dairy Technol 2018;71:593-600. https://doi.org/10.1111/1471-0307.12485
  17. Malacarne M, Summer A, Franceschi P, et al. Free fatty acid profile of Parmigiano-Reggiano cheese throughout ripening: Comparison between the inner and outer regions of the wheel. Int Dairy J 2009;19:637-41. https://doi.org/10.1016/j.idairyj.2009.04.004
  18. Malacarne M, Criscione A, Franceschi P, et al. New insights into chemical and mineral composition of donkey milk throughout nine months of lactation. Animals 2019;9:1161. https://doi.org/10.3390/ani9121161
  19. Fryer TF, Lawrence RC, Reiter B. Methods for isolation and enumeration of lipolytic organisms. J Dairy Sci 1967;50:477-84. https://doi.org/10.3168/jds.S0022-0302(67)87450-2
  20. Franceschi P, Malacarne M, Faccia M, et al. New insights of cheese yield capacity between Italian Brown and Italian Friesian milks in the production of high moisture mozzarella. Food Technol Biotechnol 2020;58:91-7. https://doi.org/10.17113/ftb.58.01.20.6386
  21. Horwitz W. AOAC International. AOAC Official Method no. 996.06. Fat (total, saturated, and unsaturated) in foods; hydrolytic extraction gas chromatographic method. Official Methods of Analysis of AOAC International. 17th ed. Gaithersburg, MD, USA: AOAC International; 2000; pp. 20-4.
  22. De Jong C, Badings HT. Determination of free fatty acids in milk and cheese: procedure for extraction, clean up and capillary gas chromatographic analysis. J High Resol Chrom 1990;13:94-8. https://doi.org/10.1002/jhrc.1240130204
  23. Franceschi P, Malacarne M, Formaggioni P, Cipolat-Gotet C, Stocco G, Summer A. Effect of season and factory on cheese-making efficiency in parmigiano reggiano manufacture. Foods 2019;8:315. https://doi.org/10.3390/foods8080315
  24. Malacarne M, Summer A, Franceschi P, et al. Effects of storage conditions on physico-chemical characteristics, salt equilibria, processing properties and microbial development of raw milk. Int Dairy J 2013;29:36-41. https://doi.org/10.1016/j.idairyj.2012.10.005
  25. Mammi LME, Grazia L, Palmonari A, et al. Does the dry cow treatment with monensin controlled release capsule affect Parmigiano Reggiano cheese production? J Dairy Sci 2018;101:8847-59. https://doi.org/10.3168/jds.2017-14299
  26. D'Incecco P, Limbo S, Hogenboom J, Rosi V, Gobbi S, Pellegrino L. Impact of extending hard-cheese ripening: a multiparameter characterization of Parmigiano Reggiano cheese ripened up to 50 months. Foods 2020;9:268. https://doi.org/10.3390/foods9030268
  27. Careri M, Spagnoli S, Panari G, Zannoni M, Barbieri G. Chemical parameters of the non-volatile fraction of ripened Parmigiano-Reggiano cheese. Int Dairy J 1996;6:147-55. https://doi.org/10.1016/0958-6946(94)00056-5
  28. Walstra P. Formation of emulsions. In Becher P, editor. Encyclopedia of emulsion technology, vol. 1. Basic Theory. New York, USA: Decker; 1983. p. 57-128.
  29. Sandri S, Fossa E, Pecorari M, Summer A, Mariani P. Progress of lipolysis during the ripening of Parmigiano Reggiano cheese. Sci Tecn Latt-Cas 1997;49:243-52.
  30. Baur C, Krewinkel M, Kranz B, et al. Quantification of the proteolytic and lipolytic activity of microorganisms isolated from raw milk. Int Dairy J 2015;49:23-9. https://doi.org/10.1016/j.idairyj.2015.04.005
  31. Decimo M, Brasca M, Ordonez JA, Cabeza MC. Fatty acids released from cream by psychrotrophs isolated from bovine raw milk. Int J Dairy Technol 2017;70:339-44. https://doi.org/10.1111/1471-0307.12347
  32. Salaberria.F,.Marzocchi.S,.Bortolazzo.E,.Carrin ME, Caboni MF. Study of the effect of NaCl on lipolysis in Parmigiano Reggiano cheese. ACS Food Sci Technol 2021;1:54-9. https://doi.org/10.1021/acsfoodscitech.0c00025
  33. Bertocchi L, Vitali A, Lacetera N, Varisco G, Bernabucci U. Seasonal variations in the composition of Holstein cow's milk and temperature-humidity index relationship. Animal 2014;8:667-74. https://doi.org/10.1017/S1751731114000032
  34. Pacheco-Pappenheim S, Yener S, Heck JML, Dijkstra J, van Valenberg HJF. Seasonal variation in fatty acid and triacylglycerol composition of bovine milk fat. J Dairy Sci 2021;104:8479-92. https://doi.org/10.3168/jds.2020-19856