Acknowledgement
We want to affectionately thank Prof. Bai Wenlin for his assistance in the revision of this article.
References
- Ripoll G, Alcalde MJ, Arguello A, Cordoba MG, Panea B. Effect of rearing system on the straight and branched fatty acids of goat milk and meat of suckling kids. Foods 2020;9:471. https://doi.org/10.3390/foods9040471
- Watkins PJ, Frank D. Heptadecanoic acid as an indicator of BCFA content in sheep fat. Meat Sci 2019;151:33-5. https://doi.org/10.1016/j.meatsci.2019.01.005
- Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev 1998;78:783-809. https://doi.org/10.1152/physrev.1998.78.3.783
- Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97. https://doi.org/10.1016/s0092-8674(04)00045-5
- Ambros V. The functions of animal microRNAs. Nature 2004;431:350-5. https://doi.org/10.1038/nature02871
- Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014;15:509-24. https://doi.org/10.1038/nrm3838
- Sun YM, Qin J, Liu SG, et al. PDGFRα Regulated by miR34a and FoxO1 Promotes Adipogenesis in Porcine Intramuscular Preadipocytes through Erk Signaling Pathway. Int J Mol Sci 2017;18:2424. https://doi.org/10.3390/ijms18112424
- Chen L, Song J, Cui J, et al. microRNAs regulate adipocyte differentiation. Cell Biol Int 2013;37:533-46. https://doi.org/10.1002/cbin.10063
- Hu X, Tang J, Hu X, et al. MiR-27b impairs adipocyte differentiation of human adipose tissue-derived mesenchymal stem cells by targeting LPL. Cell Physiol Biochem 2018;47:545-55. https://doi.org/10.1159/000489988
- Qi R, Wang J, Wang Q, et al. MicroRNA-425 controls lipogenesis and lipolysis in adipocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2019;1864:744-55. https://doi.org/10.1016/j.bbalip.2019.02.007
- Zhang M, Li DH, Li F, et al. Integrated analysis of MiRNA and genes associated with meat quality reveals that gga-mir140-5p affects intramuscular fat deposition in chickens. Cell Physiol Biochem 2018;46:2421-33. https://doi.org/10.1159/000489649
- Hu Y, Wang K, He X, Chiang DY, Prins JF, Liu J. A probabilistic framework for aligning paired-end RNA-seq data. Bioinformatics 2010;26:1950-7. https://doi.org/10.1093/bioinformatics/btq336
- Li X, Zhang H, Wang Y, et al. RNA-seq analysis reveals the positive role of KLF5 in the differentiation of subcutaneous adipocyte in goats. Gene 2022;808:145969. https://doi.org/10.1016/j.gene.2021.145969
- Peng Y, Yu S, Li H, Xiang H, Peng J, Jiang S. MicroRNAs: emerging roles in adipogenesis and obesity. Cell Signal 2014;26:1888-96. https://doi.org/10.1016/j.cellsig.2014.05.006
- Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009;10:57-63. https://doi.org/10.1038/nrg2484
- Bakhtiarizadeh MR, Salehi A, Alamouti AA, Abdollahi-Arpanahi R, Salami SA. Deep transcriptome analysis using RNA-Seq suggests novel insights into molecular aspects of fat-tail metabolism in sheep. Sci Rep 2019;9:9203. https://doi.org/10.1038/s41598-019-45665-3
- Zhang Y, Yu B, Yu J, et al. Butyrate promotes slow-twitch myofiber formation and mitochondrial biogenesis in finishing pigs via inducing specific microRNAs and PGC-1α expression. J Anim Sci 2019;97:3180-92. https://doi.org/10.1093/jas/skz187
- Wang L, Zhang N, Pan HP, Wang Z, Cao ZY. MiR-499-5p contributes to hepatic insulin resistance by suppressing PTEN. Cell Physiol Biochem 2015;36:2357-65. https://doi.org/10.1159/000430198
- Liu W, Bi P, Shan T, et al. miR-133a regulates adipocyte browning in vivo. PLoS Genet 2013;9:e1003626. https://doi.org/10.1371/journal.pgen.1003626
- Liu H, Wang T, Chen X, et al. Inhibition of miR-499-5p expression improves nonalcoholic fatty liver disease. Ann Hum Genet 2020 Jan 20 [Epub]. https://doi.org/10.1111/ahg.12374
- Y oussef EM, Elfiky AM, BanglySoliman, Abu-Shahba N, Elhefnawi MM. Expression profiling and analysis of some miRNAs in subcutaneous white adipose tissue during development of obesity. Genes Nutr 2020;15:8. https://doi.org/10.1186/s12263-020-00666-0
- Ning X, Liu S, Qiu Y, et al. Expression profiles and biological roles of miR-196a in swine. Genes (Basel) 2016;7:5. https://doi.org/10.3390/genes7020005
- Mori M, Nakagami H, Rodriguez-Araujo G, Nimura K, Kaneda Y. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol 2012;10:e1001314. https://doi.org/10.1371/journal.pbio.1001314
- Hou Y, Fu L, Li J, et al. Transcriptome analysis of potential miRNA involved in adipogenic differentiation of C2C12 myoblasts. Lipids 2018;53:375-86. https://doi.org/10.1002/lipd.12032
- Li JJ, Xie D. Cleavage of focal adhesion kinase (FAK) is essential in adipocyte differentiation. Biochem Biophys Res Commun 2007;357:648-54. https://doi.org/10.1016/j.bbrc.2007.03.184
- Xiong Y, Wang YX, Xu Q, et al. LKB1 regulates goat intramuscular adipogenesis through focal adhesion pathway. Front Physiol 2021;12:755598. https://doi.org/10.3389/fphys.2021.755598
- Sakaue H, Ogawa W, Nakamura T, Mori T, Nakamura K, Kasuga M. Role of MAPK phosphatase-1 (MKP-1) in adipocyte differentiation. J Biol Chem 2004;279:39951-7. https://doi.org/10.1074/jbc.M407353200
- Wu W, Zhang J, Zhao C, Sun Y, Pang W, Yang G. CTRP6 regulates porcine adipocyte proliferation and differentiation by the AdipoR1/MAPK signaling pathway. J Agric Food Chem 2017;65:5512-22. https://doi.org/10.1021/acs.jafc.7b00594
- Wang Q, Li D, Cao G, et al. IL-27 signalling promotes adipocyte thermogenesis and energy expenditure. Nature 2021;600:314-8. https://doi.org/10.1038/s41586-021-04127-5
- Okla M, Kim J, Koehler K, Chung S. Dietary factors promoting brown and beige fat development and thermogenesis. Adv Nutr 2017;8:473-83. https://doi.org/10.3945/an.116.014332
- Sakamoto T, Takahashi N, Goto T, Kawada T. Dietary factors evoke thermogenesis in adipose tissues. Obes Res Clin Pract 2014;8:e533-9. https://doi.org/10.1016/j.orcp.2013.12.002
- Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell 2014;156:20-44. https://doi.org/10.1016/j.cell.2013.12.012
- Zhang Y, Li R, Meng Y, et al. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes 2014;63:514-25. https://doi.org/10.2337/db13-1106
- Song Z, Wang Y, Zhang F, Yao F, Sun C. Calcium signaling pathways: key pathways in the regulation of obesity. Int J Mol Sci 2019;20:2768. https://doi.org/10.3390/ijms20112768
- He YH, He Y, Liao XL, et al. The calcium-sensing receptor promotes adipocyte differentiation and adipogenesis through PPARγ pathway. Mol Cell Biochem 2012;361:321-8. https://doi.org/10.1007/s11010-011-1118-5
- 36 Xiao J, Bai XQ, Liao L, et al. Hydrogen sulfide inhibits PCSK9 expression through the PI3K/Akt-SREBP-2 signaling pathway to influence lipid metabolism in HepG2 cells. Int J Mol Med 2019;43:2055-63. https://doi.org/10.3892/ijmm.2019.4118
- Song BQ, Chi Y, Li X, et al. Inhibition of notch signaling promotes the adipogenic differentiation of mesenchymal stem cells through autophagy activation and PTEN-PI3K/AKT/mTOR pathway. Cell Physiol Biochem 2015;36:1991-2002. https://doi.org/10.1159/000430167
- Lee JH, Jung HA, Kang MJ, Choi JS, Kim GD. Fucosterol, isolated from Ecklonia stolonifera, inhibits adipogenesis through modulation of FoxO1 pathway in 3T3-L1 adipocytes. J Pharm Pharmacol 2017;69:325-33. https://doi.org/10.1111/jphp.12684
- Krycer JR, Quek LE, Francis D, et al. Insulin signaling requires glucose to promote lipid anabolism in adipocytes. J Biol Chem 2020;295:13250-66. https://doi.org/10.1074/jbc.RA120.014907
- Shan T, Liu J, Wu W, Xu Z, Wang Y. Roles of notch signaling in adipocyte progenitor cells and mature adipocytes. J Cell Physiol 2017;232:1258-61. https://doi.org/10.1002/jcp.25697
- Bluthgen N, Legewie S. Systems analysis of MAPK signal transduction. Essays Biochem 2008;45:95-108. https://doi.org/10.1042/bse045095
- Han HJ, Lee YJ. Insulin stimulates Ca2+ uptake via PKC, cAMP, and p38 MAPK in mouse embryonic stem cells. Life Sci 2005;76:2903-19. https://doi.org/10.1016/j.lfs.2004.10.060
- Oliveira MS, Rheinheimer J, Moehlecke M, et al. UCP2, IL18, and miR-133a-3p are dysregulated in subcutaneous adipose tissue of patients with obesity. Mol Cell Endocrinol 2020;509:110805. https://doi.org/10.1016/j.mce.2020.110805