• Title/Summary/Keyword: Cheese Lipolysis

Search Result 4, Processing Time 0.019 seconds

Fatty acids composition and lipolysis of Parmigiano Reggiano PDO cheese: effect of the milk cooling temperature at the farm

  • Piero, Franceschi;Paolo, Formaggioni;Milena, Brasca;Giuseppe, Natrella;Michele, Faccia;Massimo, Malacarne;Andrea, Summer
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.132-143
    • /
    • 2023
  • Objective: The aim was to study the influence of cooling milk at 9℃ at the farm versus keeping it at 20℃ on Parmigiano Reggiano cheese lipolysis. Methods: A total of six cheesemaking trials (3 in winter and 3 in summer) were performed. In each trial, milk was divided continuously into two identical aliquots, one of which was kept at 9℃ (MC9) and the other at 20℃ (MC20). For each trial and milk temperature, vat milk (V-milk) and the resulting 21 month ripened cheese were analysed. Results: Fat and dry matter and fat/casein ratio were lower in MC9 V-milk (p≤0.05) than in MC20. Total bacteria, mesophilic lactic acid and psychrotrophic and lipolytic bacteria showed significant differences (p≤0.05) between the two V-milks. Regarding cheese, fat content resulted lower and crude protein higher (p≤0.05) both in outer (OZ) and in inner zone (IZ) of the MC9 cheese wheels. Concerning total fatty acids, the MC9 OZ had a lower concentration of butyric, capric (p≤0.05) and medium chain fatty acids (p≤0.05), while the MC9 IZ had lower content of butyric (p≤0.05), caproic (p≤0.01) and short chain fatty acids (p≤0.05). The levels of short chain and medium chain free fatty acids (p≤0.05) were lower and that of long chain fatty acids (p≤0.05) was higher in MC9 OZ cheese. The principal component analysis of total and free fatty acids resulted in a clear separation among samples by seasons, whereas slight differences were observed between the two different milk temperatures. Conclusion: Storing milk at 9℃ at the herd affects the chemical composition of Parmigiano Reggiano, with repercussion on lipolysis. However, the changes are not very relevant, and since the cheese can present a high variability among the different cheese factories, such changes should be considered within the "normal variations" of Parmigiano Reggiano chemical characteristics.

Formation of Cheese Flavor and EMC Technology (치즈 풍미성분의 형성과 EMC 제조기술)

  • Han, Kyeong-Sik;Jeon, Woo-Min
    • Journal of Dairy Science and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.88-96
    • /
    • 2003
  • Cheese flavor is derived from three main pathways, that are proteolysis, lipolysis and glycolysis, the extent of which varies according to the cheese variety. Proteolysis is the most complex of the three primary events during cheese ripening. The basis of EMC technology is the use of specific enzymes acting at optimum conditions to produce required cheese flavors from suitable substrates. These enzymes consist of proteinases, peptidases, lipases, esterases. The key factors in EMC production are the type of cheese flavor required, the type and specificity of enzyme or cultures used, their concentration and some processing parameters, such as pH, temperature, agitation, aeration, and incubation time. The emulsifiers, bacteriocins, flavor compounds, and precursors also effect to it importantly. The dosage of enzyme or starter culture used is dependent on the intensity of flavor required, processing time and temperature and the quality of the initial substrate. To produce a consistent EMC product it is necessary to have a highly controlled process, and a detailed knowledge of the enzymatic reactions under the conditions used must be fully understood.

  • PDF

Changes of Organic Acids and Free Fatty Acids During the Ripening of Emmental Cheese (에멘탈치즈의 숙성 중 유기산과 유리지방산의 변화)

  • Shin, Yong-Kook;Oh, Nam-Su;Nam, Myoung-Soo
    • Food Science of Animal Resources
    • /
    • v.31 no.6
    • /
    • pp.928-934
    • /
    • 2011
  • The objective of this study was to characterize the lactate metabolism and lipolysis in Emmental cheese made of Korean raw milk throughout the ripening periods; 14 d at $10^{\circ}C$, 42 d at $23^{\circ}C$, and 30 d at $4^{\circ}C$. Emmental cheese was made using a commercial starter culture with propionic acid bacteria (PAB) and without PAB as a control on the pilot plant scale. Changes in the contents of five organic acids (citric, lactic, formic, acetic, and propionic acid) and individual free fatty acids (FFAs) were measured using HPLC/PDA and GC/FID. As a result of propionic fermentation by PAB, the concentration of acetic acid and propionic acid increased up to 1.5 and 6.1 g/kg, respectively and the most dramatic increased occurred when incubated in the hot room ($23^{\circ}C$). Lactic, citric, and formic acid contents were 2.6, 2.5 and 0.8 g/kg at the end of ripening, respectively. As a result of lipolysis, the amount of total FFAs was 6,628.2 mg/kg. Compared to the control, levels of individual FFAs from butyric (C6:0) to linoleic (C18:2) acids increased significantly (p<0.05) during the ripening period. Especially, 65.1% of total FFAs was released in the $23^{\circ}C$ room and the most abundant FFAs were palmitic (C16:0), stearic (C18:0) and oleic acid (C18:1). These results demonstrated that the lipolysis of Emmental cheese was strongly affected by bacterial lipase from PAB.

Investigation of Flavor-Forming Starter Lactococcus lactis subsp. lactis LDTM6802 and Lactococcus lactis subsp. cremoris LDTM6803 in Miniature Gouda-Type Cheeses

  • Lee, Hye Won;Kim, In Seon;Kil, Bum Ju;Seo, Eunsol;Park, Hyunjoon;Ham, Jun-Sang;Choi, Yun-Jaie;Huh, Chul Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1404-1411
    • /
    • 2020
  • Lactic acid bacteria (LAB) play an important role in dairy fermentations, notably as cheese starter cultures. During the cheese production and ripening period, various enzymes from milk, rennet, starter cultures, and non-starter LABs are involved in flavor formation pathways, including glycolysis, proteolysis, and lipolysis. Among these three pathways, starter LABs are particularly related to amino acid degradation, presumably as the origins of major flavor compounds. Therefore, we used several enzymes as major criteria for the selection of starter bacteria with flavor-forming ability. Lactococcus lactis subsp. lactis LDTM6802 and Lactococcus lactis subsp. cremoris LDTM6803, isolated from Korean raw milk and cucumber kimchi, were confirmed by using multiplex PCR and characterized as starter bacteria. The combinations of starter bacteria were validated in a miniature Gouda-type cheese model. The flavor compounds of the tested miniature cheeses were analyzed and profiled by using an electronic nose. Compared to commercial industrial cheese starters, selected starter bacteria showed lower pH, and more variety in their flavor profile. These results demonstrated that LDTM6802 and LDTM6803 as starter bacteria have potent starter properties with a characteristic flavor-forming ability in cheese.