DOI QR코드

DOI QR Code

Analysis of uninterruptable power supply critical-to-quality factors

  • Pavan Mohan Neelamraju (Department of Electronics and Communication Engineering, SRM University AP) ;
  • Siva Yellampalli (Department of Electronics and Communication Engineering, SRM University AP)
  • Received : 2023.01.18
  • Accepted : 2023.06.20
  • Published : 2023.12.20

Abstract

The demand for a reliable power supply and electricity continues to increase, which has led to an increase in the production capacities of power generation units and regular utilization of the power transmission infrastructure. This in turn has resulted in significant stress on the system, which can cause issues such as sudden outages. To eliminate these problems, it is important to accurately evaluate the performance of electrical appliances. With this in mind, this paper investigates the power, runtime, and related quantities of Uninterruptible Power Supply (UPS) systems. This information can be used to understand the lifespan, safety, and efficiency of these systems. This study examines how various circuit parameters impact the runtime of a UPS system and analyzes the chronological variations of UPS system runtime using collected parametric data. It also maps the relationship between parameters, such as the temperature at the battery positive terminal, supply voltage, supply current, average power, and total energy stored in the battery with respect to the runtime of the system. Additionally, the future trends of system runtime are inferred using the stated parameters. This study also proposes new methods for assessing the effectiveness of power use and developing forecasting models with relatively small data sets. Overall, the current work offers new insights into UPS system performance and the factors contributing to chronological variations in runtime.

Keywords

Acknowledgement

We gratefully acknowledge and express our thanks to the organization of UST Global for providing the necessary technical support in enabling the current research forward.

References

  1. Zainudin, M.F., Hussin, H., Halim, A.K., Karim, J.: Efects of permanent and recoverable component of NBTI mechanisms on fip fop circuits designed using planar MOSFET and FinFET. In: 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE). pp. 145-149 (2018)
  2. Dankovic, D., Manic, I., Davidovic, V., Prijic, A., Marjanovic, M., Ilic, A., Prijic, Z., Stojadinovic, N.D.: On the recoverable and permanent components of NBTI in p-channel power VDMOSFETs. IEEE Trans. Device Mater. Reliab. 16, 522-531 (2016) https://doi.org/10.1109/TDMR.2016.2598557
  3. Grasser, T., Waltl, M., Rzepa, G., Goes, W., Wimmer, Y., ElSayed, A.-M., Shluger, A.L., Reisinger, H., Kaczer, B.: The "permanent" component of NBTI revisited: saturation, degradationreversal, and annealing. In: 2016 IEEE International Reliability Physics Symposium (IRPS). pp. 5A-2 (2016)
  4. Yeh, W.-K., Wang, W.-H., Fang, Y.-K., Yang, F.-L.: Temperature dependence of hot-carrier-induced degradation in 0.1 ㎛ SOI nMOSFETs with thin oxide. IEEE Electron Device Lett. 23, 425-427 (2002) https://doi.org/10.1109/LED.2002.1015228
  5. Chbili, Z., Cheung, K.P., Campbell, J.P., Chbili, J., Lahbabi, M., Ioannou, D.E., Matocha, K.: Time dependent dielectric breakdown in high quality SiC MOS capacitors. In: Materials Science Forum. pp. 615-618 (2016)
  6. Rahmat, M.K., Jovanovic, S., Lo, K.L.: Reliability and Availability modelling of Uninterruptible Power Supply (UPS) systems using Monte-Carlo simulation. In: 2011 5th International Power Engineering and Optimization Conference. pp. 267-272 (2011)
  7. Lei, Y., Huang, A.Q.: Data center power distribution system reliability analysis tool based on Monte Carlo next event simulation method. In: 2017 IEEE Energy Conversion Congress and Exposition (ECCE). pp. 2031-2035 (2017)
  8. Rahmat, M.K., Jovanovic, S.: Reliability modelling of uninterruptible power supply systems using fault tree analysis method. Eur. Trans. Electrical Power 19, 258-273 (2009) https://doi.org/10.1002/etep.211
  9. Flammini, F., Marrone, S., Mazzocca, N., Vittorini, V.: Modelling system reliability aspects of ERTMS/ETCS by fault trees and Bayesian networks. In: Proc. European Safety and Reliability Conference, ESREL. pp. 2675-2683 (2006)
  10. Rosinski, A., DAbRowski, T.: Modelling reliability of uninterruptible power supply units. Eksploatacja i Niezawodnosc 15, 409 (2013)
  11. Parikh, R., Krishnan, R.: Modeling, simulation and analysis of an uninterruptible power supply. In: Proceedings of IECON'94- 20th Annual Conference of IEEE Industrial Electronics. pp. 485-490 (1994)
  12. Rahmat, M.K., Jovanovic, S., Lo, K.L.: Reliability modelling of the DC uninterruptible power supply. 3rd IET International Conference on Power Electronics, Machines and Drives. pp. 68-372 (2006)
  13. Rahmat, M., Jovanovic, S., Lo, K.L.: Reliability and availability modelling of uninterruptible power supply systems using Monte-Carlo simulation. Int. Rev. Electr. Eng. 1, 374-380 (2006)
  14. Rahmat, M.K., Jovanovic, S., Lo, K.L.: Reliability estimation of uninterruptible power supply systems: Boolean truth table method. In: INTELEC 06-Twenty-Eighth International Telecommunications Energy Conference. pp. 1-6 (2006)
  15. Rahmat, M.K., Jovanovic, S., Lo, K.L.: Reliability Modelling of Uninterruptible Power Supply Using Probability Tree Method. In: Proceedings of the 41st International Universities Power Engineering Conference. pp. 603-607 (2006)
  16. Singh, C., Gubbala, N.V.: Reliability analysis of electric supply including standby generators and uninterruptible power supply system. In: Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting. pp. 1454-1460 vol.2 (1993)
  17. Rahmat, M.K., Karim, A.Z.A., Salleh, M.N.M.: Sensitivity analysis of the AC uninterruptible power supply (UPS) reliability. In: 2017 International Conference on Engineering Technology and Technopreneurship (ICE2T). pp. 1-6 (2017)
  18. Stawowy, M., Rosinski, A., Siergiejczyk, M., Perlicki, K.: Quality and reliability-exploitation modeling of power supply systems. Energies 14, 2727 (2021)
  19. Rahmat, M.K., Mazlan, M.A.H., Jaafar, A.H., Musa, W.A.A.W., Ros, M.N.M.: Uninterruptible power supply system confguration reliability studies. In: Advanced materials and engineering technologies, pp. 347-360. Springer, Cham (2022)
  20. Dabrowski, T., Chmiel, J., Rosinski, A.: Modelling of power supplies reliability in aspect of their technical and functional state. J. KONBiN. 42, 191 (2017)
  21. Rahmat, M.K., Jovanovic, S.: Power systems reliability estimation method. In: 2015 IEEE 13th International Conference on Industrial Informatics (INDIN). pp. 507-512 (2015)
  22. Addabbo, T., Fort, A., Mugnaini, M., Vignoli, V.: Distributed UPS control systems reliability analysis. Measurement 110, 275-283 (2017) https://doi.org/10.1016/j.measurement.2017.06.021
  23. Rahmat, M.K., Zaki Abdul Karim, A., Salleh, M.N.: Uninterruptible Power Supply System Confgurations: Reliability & CostBeneft Analysis. In: 2018 IEEE 7th International Conference on Power and Energy (PECon). pp. 252-256 (2018)
  24. Delgado, M., Sira-Ramirez, H.: A bond graph approach to the modeling and simulation of switch regulated dc-to-dc power supplies. Simul. Pract. Theory 6, 631-646 (1998) https://doi.org/10.1016/S0928-4869(98)00011-1
  25. Wang, X., Blaabjerg, F., Wu, W.: Modeling and analysis of harmonic stability in an AC power-electronics-based power system. IEEE Trans. Power Electron. 29, 6421-6432 (2014) https://doi.org/10.1109/TPEL.2014.2306432
  26. Johansson, J., Hassel, H.: An approach for modelling interdependent infrastructures in the context of vulnerability analysis. Reliab. Eng. Syst. Saf. 95, 1335-1344 (2010) https://doi.org/10.1016/j.ress.2010.06.010
  27. Rahmani, R., Moser, I., Seyedmahmoudian, M.: A complete model for modular simulation of data centre power load. arXiv preprint arXiv:1804. 00703. (2018)
  28. Pawar, S.S., Deshpande, A.P., Murali, M.: Modelling and simulation of DSTATCOM for power quality improvement in distribution system using MATLAB SIMULINK tool. In: 2015 International Conference on Energy Systems and Applications. pp. 224-227 (2015)
  29. Ounif, H.-A., Liu, X., Gherbi, A., Lemieux, Y., Li, W.: Modelbased approach to data center design and power usage efectiveness assessment. Proc. Comput. Sci. 141, 143-150 (2018) https://doi.org/10.1016/j.procs.2018.10.160
  30. Chang, C.-J., Guiping, L.I., Jianhong, G.U.O., Kun-Peng, Y.U.: Data-driven forecasting model for small data sets. Econ. Comput. Cybern. Stud. Res. 54, 217 (2020)
  31. Kim, M., Lee, W.-J.: Inverter average input power estimation algorithm in low-frequency modulation index operation of permanent magnet synchronous motors. J. Power Electron. 23, 274-283 (2023) https://doi.org/10.1007/s43236-022-00561-4
  32. Tian, H., Li, A., Li, X.: SOC estimation of lithium-ion batteries for electric vehicles based on multimode ensemble SVR. J. Power Electron. 21, 1365-1373 (2021) https://doi.org/10.1007/s43236-021-00279-9
  33. Wang, P., Peng, X., Ze, C.: State-of-health estimation for lithiumion batteries using differential thermal voltammetry and Gaussian process regression. J. Power Electron. 22, 1165-1175 (2022) https://doi.org/10.1007/s43236-022-00428-8
  34. Park, H.-J., Kim, J.-C., Kwak, S.: Deep learning-based estimation technique for capacitance and ESR of input capacitors in single-phase DC/AC converters. J. Power Electron. 22, 513-521 (2022) https://doi.org/10.1007/s43236-021-00366-x
  35. Pradyumna, T.K., Cho, K., Kim, M., Choi, W.: Capacity estimation of lithium-ion batteries using convolutional neural network and impedance spectra. J. Power Electron. 22, 850-858 (2022) https://doi.org/10.1007/s43236-022-00410-4
  36. Li, X., Ma, Y.: Remaining useful life prediction for lithium-ion battery using dynamic fractional brownian motion degradation model with long-term dependence. J. Power Electron. 22, 2069- 2080 (2022) https://doi.org/10.1007/s43236-022-00507-w
  37. Ansari, S., Ayob, A., Hossain Lipu, M.S., Hussain, A., Saad, M.H.M.: Data-driven remaining useful life prediction for lithiumion batteries using multi-charging profile framework: a recurrent neural network approach. Sustainability 13, 13333 (2021)
  38. Hell, S.M., Kim, C.D.: Development of a data-driven method for online battery remaining-useful-life prediction. Batteries 8, 192 (2022)