DOI QR코드

DOI QR Code

Effect of Benzoxazine Monomer Structure on the Properties of Aramid Fiber Reinforced Composite

아라미드 섬유 강화 복합재료의 물성에 미치는 아닐린계 벤조옥사진 수지의 영향

  • Min Sun Park (Department of Fiber System Engineering, Dankook University) ;
  • Se Hyeon Ahn (Department of Fiber System Engineering, Dankook University) ;
  • Eun Soo Jeon (Department of Fiber System Engineering, Dankook University) ;
  • KwangSoo Cho (Department of Fiber System Engineering, Dankook University) ;
  • Hodong Kim (Department of Fiber System Engineering, Dankook University)
  • 박민선 (단국대학교 파이버시스템공학과) ;
  • 안세현 (단국대학교 파이버시스템공학과) ;
  • 전은수 (단국대학교 파이버시스템공학과) ;
  • 조광수 (단국대학교 파이버시스템공학과) ;
  • 김호동 (단국대학교 파이버시스템공학과)
  • Received : 2023.11.21
  • Accepted : 2023.12.15
  • Published : 2023.12.31

Abstract

The effect of aniline-based benzoxazine resin on the physical properties of aramid fiber and glass fiber reinforced composites was investigated to assess its suitability as a high-performance composite matrix. 2,2-bis(3,4-dihydro-3-phenyl-2H-1,3-benzoxazine) propane and 2,2-bis(3,4-dihydro-3-benzonitrile-2H-1,3-benzoxazine)propane were synthesized, and the physical properties of composites reinforced with aramid fiber and glass fiber were compared and evaluated. The structures of the synthesized benzoxazine monomers were confirmed by using nuclear magnetic resonance and Fourier transform infrared spectroscopy, and the thermal properties were analyzed by using differential scanning calorimetry and thermogravimetric analysis. The tensile and flexural strengths of the composites were measured by universal testing machine and the interface of the composites was investigated by a scanning electron microscope. It was revealed that the functional groups of benzoxazine monomers are closely related to the thermal and mechanical properties of fiber reinforced composites.

Keywords

References

  1. X. Jiang and Q. Gao, "Stress-transfer Analysis for Fibre/Matrix Interfaces in Short-fibre-reinforced Composites", Compos. Sci. Technol., 2001, 61, 1359-1366.  https://doi.org/10.1016/S0266-3538(01)00034-3
  2. C.-H. Hsueh, "Analytical Analyses of Stress Transfer in Fibre-reinforced Composites with Bonded and Debonded Fibre Ends", J. Mater. Sci., 1989, 24, 4475-4482.  https://doi.org/10.1007/BF00544532
  3. V. Chinnasamy, S. P. Subramani, S. K. Palaniappan, B. Mylsamy, and K. Aruchamy, "Characterization on Thermal Properties of Glass Fiber and Kevlar Fiber with Modified Epoxy Hybrid Composites", J. Mater. Res. Technol., 2020, 9, 3158-3167.  https://doi.org/10.1016/j.jmrt.2020.01.061
  4. V. V. Prasad and S. Talupula, "A Review on Reinforcement of Basalt and Aramid (Kevlar 129) Fibers", Mater. Today, Proc., 2018, 5, 5993-5998.  https://doi.org/10.1016/j.matpr.2017.12.202
  5. L. Luo, Y. Yuan, Y. Dai, Z. Cheng, X. Wang, and X. Liu, "The Novel High Performance Aramid Fibers Containing Benzimidazole Moieties and Chloride Substitutions", Mater. Des., 2018, 158, 127-135.  https://doi.org/10.1016/j.matdes.2018.08.025
  6. M. S. H. Al-Furjan, L. Shan, X. Shen, M. S. Zarei, M. H. Hajmohammad, and R. Kolahchi, "A Review on Fabrication Techniques and Tensile Properties of Glass, Carbon, and Kevlar Fiber Reinforced Rolymer Composites", J. Mater. Res. Technol., 2022, 19, 2930-2959.  https://doi.org/10.1016/j.jmrt.2022.06.008
  7. S. Liu, T. Yang, C. Liu, Y. Jin, D. Sun, and Y. Shen, "Modelling and Experimental Validation on Drilling Delamination of Aramid Fiber Reinforced Plastic Composites", Compos. Struct., 2020, 236, 111907. 
  8. K. Tanaka, K. Minoshima, W. Grela, and K. Komai, "Characterization of the Aramid/epoxy Interfacial Properties by Means of Pull-out Test and Influence of Water Absorption", Compos. Sci. Technol., 2002, 62, 2169-2177.  https://doi.org/10.1016/S0266-3538(02)00147-1
  9. J. Wu and X. H. Cheng, "Interfacial Studies on the Surface Modified Aramid Fiber Reinforced Epoxy Composites", J. Appl. Polym. Sci., 2006, 102, 4165-4170.  https://doi.org/10.1002/app.24460
  10. C. Ma, D. Sanchez-Rodriguez, and T. Kamo, "A Comprehensive Study on the Oxidative Pyrolysis of Epoxy Resin from Fiber/epoxy Composites, Product Characteristics and Kinetics", J. Hazard. Mater., 2021, 412, 125329. 
  11. H. Yuan, C. Wang, S. Zhang, and X. Lin, "Effect of Surface Modification on Carbon Fiber and Its Reinforced Phenolic Matrix Composite", Appl. Surface Sci., 2012, 259, 288-293.  https://doi.org/10.1016/j.apsusc.2012.07.034
  12. L. Pilato, "Phenolic Resins, 100 Years and Still Going Strong", React. Funct. Polym., 2013, 73, 270-277.  https://doi.org/10.1016/j.reactfunctpolym.2012.07.008
  13. C. R. Nair, "Advances in Addition-cure Phenolic Resins", Prog. Polym. Sci., 2004, 29, 401-498.  https://doi.org/10.1016/j.progpolymsci.2004.01.004
  14. Y. Xu, L. Guo, H. Zhang, H. Zhai, and H. Ren, "Research Status, Industrial Application Demand and Prospects of Phenolic Resin", RSC Adv., 2019, 9, 28924-28935.  https://doi.org/10.1039/C9RA06487G
  15. X. Ning and H. Ishida, "Phenolic Materials via Ring-opening Polymerization, Synthesis and Characterization of Bisphenol-A Based Benzoxazines and Their Polymers", J. Polym. Sci. Part A, Polym. Chem., 1994, 32, 1121-1129.  https://doi.org/10.1002/pola.1994.080320614
  16. Y.-X. Wang and H. Ishida, "Cationic Ring-opening Polymerization of Benzoxazines", Polymer, 1999, 40, 4563-4570.  https://doi.org/10.1016/S0032-3861(99)00074-9
  17. P. Chutayothin and H. Ishida, "Cationic Ring-opening Polymerization of 1,3-benzoxazines, Mechanistic Study Using Model Compounds", Macromolecules, 2010, 43, 4562-4572.  https://doi.org/10.1021/ma901743h
  18. H.-D. Kim and H. Ishida, "Model Compounds Study on the Network Structure of Polybenzoxazines", Macromolecules, 2003, 36, 8320-8329.  https://doi.org/10.1021/ma030108+
  19. H. Ishida and D. J. Allen, "Physical and Mechanical Characterization of Near-zero Shrinkage Polybenzoxazines", J. Polym. Sci. Part B, Polym. Phys., 1996, 34, 1019-1030.  https://doi.org/10.1002/(SICI)1099-0488(19960430)34:6<1019::AID-POLB1>3.0.CO;2-T
  20. J. Liu and H. Ishida, "Anomalous Isomeric Effect on the Properties of Bisphenol f-based Benzoxazines, Toward the Molecular Design for Higher Performance", Macromolecules, 2014, 47, 5682-5690.  https://doi.org/10.1021/ma501294y
  21. T. Agag, S. Geiger, S. M. Alhassan, S. Qutubuddin, and H. Ishida, "Low-viscosity Polyether-based Main-chain Benzoxazine Polymers, Precursors for Flexible Thermosetting Polymers", Macromolecules, 2010, 43, 7122-7127.  https://doi.org/10.1021/ma1014337
  22. H. J. Kim, Z. Brunovska, and H. Ishida, "Synthesis and Thermal Characterization of Polybenzoxazines Based on Acetylene-functional Monomers", Polymer, 1999, 40, 6565-6573.  https://doi.org/10.1016/S0032-3861(99)00046-4
  23. G. Y. Han, K. S. Cho, and H. Kim, "Thermal Behavior of Bisphenol-A-Based Copolybenzoxazine with a Nitrile Functional Group", Text. Sci. Eng., 2022, 59, 221-227. 
  24. M. K. Biswas, M. Shayed, R. Hund, and C. Cherif, "Surface Modification of Twaron Aramid Fiber by the Atmospheric Air Plasma Technique", Text. Res. J., 2013, 83, 406-417.  https://doi.org/10.1177/0040517512464291
  25. S. Safi, A. Zadhoush, and M. Masoomi, "Effects of Chemical Surface Pretreatment on Tensile Properties of a Single Glass Fiber and the Glass Fiber Reinforced Epoxy Composite", Polym. Compos., 2016, 37, 91-100.  https://doi.org/10.1002/pc.23158
  26. L. Chen, D. Ren, S. Chen, K. Li, M. Xu, and X. Liu, "Improved Thermal Stability and Mechanical Properties of Benzoxazine-based Composites with the Enchantment of Nitrile", Polym. Test., 2019, 74, 127-137.  https://doi.org/10.1016/j.polymertesting.2018.11.032
  27. Z. Brunovska, R. Lyon, and H. Ishida, "Thermal Properties of Phthalonitrile Functional Polybenzoxazines", Thermochimica Acta, 2000, 357, 195-203.  https://doi.org/10.1016/S0040-6031(00)00388-9
  28. Y. Zhu, J. Su, R. Lin, Y. Jiang, and P. Li, "Enhancing Thermal Properties of Polybenzoxazine by Incorporation of 4-cyanophenol", Thermochimica Acta, 2020, 683, 178465.  https://doi.org/10.1016/j.tca.2019.178465
  29. M. Okhawilai, T. Parnklang, P. Mora, S. Hiziroglu, and S. Rimdusit, "The Energy Absorption Enhancement in Aramid Fiber-reinforced Poly(benzoxazine-co-urethane) Composite Armors under Ballistic Impacts", J. Reinf. Plast. Compos., 2019, 38, 133-146.  https://doi.org/10.1177/0731684418808894
  30. C. Cao, J. Peng, X. Liang, E. Saiz, S. E. Wolf, H. D. Wagner, L. Jiang, and Q. Cheng, "Strong, Conductive Aramid Fiber Functionalized by Graphene", Compos. Part A, Appl. Sci. Manuf., 2021, 140, 106161.