DOI QR코드

DOI QR Code

Investigation on Microscopic Morphological Variation of Epoxy Adhesives by Dissipative Particle Dynamics Simulations

소산입자동역학을 이용한 에폭시 접착 소재 구성에 따른 미시적 모폴로지 분석

  • Joohee Choi (School of Chemical Engineering, Pusan National University) ;
  • Seung Geol Lee (School of Chemical Engineering, Pusan National University)
  • 최주희 (부산대학교 응용화학공학부) ;
  • 이승걸 (부산대학교 응용화학공학부)
  • Received : 2023.10.19
  • Accepted : 2023.12.12
  • Published : 2023.12.31

Abstract

Epoxy structural adhesives are widely used in various industries due to their excellent chemical resistance, thermal properties, high electrical insulation performance, increased joint stiffness, and potential for lightweighting in structural components. While the performance of epoxy adhesives is influenced by various factors such as chemical structures and compositions, it is challenging to analyze the structural morphology of epoxy adhesives at the molecular level. Therefore, in this study, we investigated macroscopic structural changes in epoxy adhesive materials based on the changes of components using dissipative particle dynamics (DPD) simulations. By calculating DPD parameters and simulating the degree of affinity interaction between the epoxy components, we represented the morphological characteristics according to their chemical structure. Through DPD simulations, we analyzed the number density, density field distribution, and diffusion coefficient of structure for each epoxy compositions, revealing that 3,3'-diamino diphenyl sulfone (3,3'-DDS) strongly interact with triglycidyl aminophenol (TGAP) and diglycidyl ether of bisphenol A (DGEBA), and polyether sulfone (PES) has repulsive interaction with TGAP, resulting in significant phase separation.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. J. Carter, G. Emmerson, C. L. Faro, P. McGrail, and D. Moore, "The Development of a Low Temperature Cure Modified Epoxy Resin System for Aerospace Composites", Compos. Part A Appl. Sci. Manuf., 2003, 34, 83-91.  https://doi.org/10.1016/S1359-835X(02)00115-X
  2. L. Guadagno, M. Raimondo, V. Vittoria, L. Vertuccio, C. Naddeo, S. Russo, B. De Vivo, P. Lamberti, G. Spinelli, and V. Tucci, "Development of Epoxy Mixtures for Application in Aeronautics and Aerospace", RSC Adv., 2014, 4, 15474-15488.  https://doi.org/10.1039/C3RA48031C
  3. C. May, "Epoxy Resins: Chemistry and Technology", Routledge, 2018. 
  4. S. K. Kim, "Aerospace Applications for Adhesives", Polym. Sci. Technol., 1995, 6, 556-567. 
  5. S. R. Hartshorn, "Structural Adhesives: Chemistry and Technology", Springer Sci. Bus. Media, 2012. 
  6. Z. Ahmadi, "Nanostructured Epoxy Adhesives: A Review", Prog. Org. Coat., 2019, 135, 449-453.  https://doi.org/10.1016/j.porgcoat.2019.06.028
  7. A. De Morais, A. Pereira, J. Teixeira, and N. Cavaleiro, "Strength of Epoxy Adhesive-Bonded Stainless-Steel Joints", Int. J. Adhes. Adhes., 2007, 27. 679-686.  https://doi.org/10.1016/j.ijadhadh.2007.02.002
  8. U. Vietri, L. Guadagno, M. Raimondo, L. Vertuccio, and K. Lafdi, "Nanofilled Epoxy Adhesive for Structural Aeronautic Materials", Compos. B Eng., 2014, 61, 73-83.  https://doi.org/10.1016/j.compositesb.2014.01.032
  9. M. Banea, F. De Sousa, L. Da Silva, R. Campilho, and A. B. de Pereira, "Effects of Temperature and Loading Rate on the Mechanical Properties of a High Temperature Epoxy Adhesive", J. Adhes. Sci. Technol., 2011, 25, 2461-2474.  https://doi.org/10.1163/016942411X580144
  10. F. Seidi, M. Jouyandeh, M. Taghizadeh, A. Taghizadeh, H. Vahabi, S. Habibzadeh, K. Formela, and M. R. Saeb, "Metal-Organic Framework (MOF)/Epoxy Coatings: A Review", Materials, 2020, 13, 2881. 
  11. S. Manouchehri, B. Bagheri, S. H. Rad, M. N. Nezhad, Y. C. Kim, O. O. Park, M. Farokhi, M. Jouyandeh, M. R. Ganjali, and M. K. Yazdi, "Electroactive Bio-Epoxy Incorporated Chitosan-Oligoaniline as an Advanced Hydrogel Coating for Neural Interfaces", Prog. Org. Coat., 2019, 131, 389-396.  https://doi.org/10.1016/j.porgcoat.2019.03.022
  12. R. Singh, M. Zhang, and D. Chan, "Toughening of a Brittle Thermosetting Polymer: Effects of Reinforcement Particle Size and Volume Fraction", J. Mater. Sci., 2002, 37, 781-788.  https://doi.org/10.1023/A:1013844015493
  13. D. Pinto, L. Bernardo, A. Amaro, and S. Lopes, "Mechanical Properties of Epoxy Nanocomposites Using Titanium Dioxide as Reinforcement-A Review", Constr. Build. Mater., 2015, 95, 506-524.  https://doi.org/10.1016/j.conbuildmat.2015.07.124
  14. Y. Jo and Y. Choe, "Mechanical Properties of Core-Shell Rubber (CSR)/Diallyl Phthalate (DAP)/Epoxy Systems for Electronic Packaging Materials", Mol. Cryst. Liq. Cryst., 2011, 539, 190-530.  https://doi.org/10.1080/15421406.2011.566126
  15. S. Ok and Y. Choe, "Impact Optimized Performance of Epoxy/Polyamide/CSR (Core Shell Rubber)/Anhydride Blends at Low Temperature", Mol. Cryst. Liq. Cryst., 2013, 579, 55-61.  https://doi.org/10.1080/15421406.2013.805083
  16. L. Calabrese and A. Valenza, "Effect of CTBN Rubber Inclusions on the Curing Kinetic of DGEBA-DGEBF Epoxy Resin", Eur. Polym. J., 2003, 39, 1355-1363.  https://doi.org/10.1016/S0014-3057(02)00390-7
  17. J. L. Tack and D. M. Ford, "Thermodynamic and Mechanical Properties of Epoxy Resin DGEBF Crosslinked with DETDA by Molecular Dynamics", J. Mol. Graph. Model., 2008, 26, 1269-1275.  https://doi.org/10.1016/j.jmgm.2007.12.001
  18. H. Miyagawa and L. T. Drzal, "Thermo-Physical and Impact Properties of Epoxy Nanocomposites Reinforced by Single-Wall Carbon Nanotubes", Polymer, 2004, 45, 5163-5170.  https://doi.org/10.1016/j.polymer.2004.05.036
  19. G. George, P. Cole-Clarke, N. St. John, and G. Friend, "Real-Time Monitoring of the Cure Reaction of a TGDDM/DDS Epoxy Resin Using Fiber Optic FT-IR", J. Appl. Polym. Sci., 1991, 42, 643-657.  https://doi.org/10.1002/app.1991.070420310
  20. J. Zhou and J. P. Lucas, "Hygrothermal Effects of Epoxy Resin. Part I: The Nature of Water in Epoxy", Polymer, 1999, 40, 5505-5512.  https://doi.org/10.1016/S0032-3861(98)00790-3
  21. B.-G. Min, Z. Stachurski, J. Hodgkin, and G. Heath, "Quantitative Analysis of the Cure Reaction of DGEBA/DDS Epoxy Resins Without and with Thermoplastic Polysulfone Modifier Using Near Infra-Red Spectroscopy", Polymer, 1993, 34, 3620-3627.  https://doi.org/10.1016/0032-3861(93)90046-D
  22. Y. Rosetti, P. Alcouffe, J.-P. Pascault, J.-F. Gerard, and F. Lortie, "Polyether Sulfone-Based Epoxy Toughening: From Micro-To Nano-Phase Separation via PES End-Chain Modification and Process Engineering", Materials, 2018, 11, 1960. 
  23. X. Lu, P. Nautiyal, J. Bustillos, A. Loganathan, C. Zhang, Y. Chen, B. Boesl, and A. Agarwal, "Hydroxylated Boron Nitride Nanotube-Reinforced Polyvinyl Alcohol Nanocomposite Films with Simultaneous Improvement of Mechanical and Thermal Properties", Polym. Compos., 2020, 41, 5182-5194.  https://doi.org/10.1002/pc.25785
  24. K. Mimura, H. Ito, and H. Fujioka, "Improvement of Thermal and Mechanical Properties by Control of Morphologies in PES-Modified Epoxy Resins", Polymer, 2000, 41, 4451-4459.  https://doi.org/10.1016/S0032-3861(99)00700-4
  25. H. H. Wang and J. C. Chen, "Toughening of Epoxy Resin by Reacting with Functional Terminated-Polyurethanes", J. Appl. Polym. Sci., 1995, 57, 671-677.  https://doi.org/10.1002/app.1995.070570603
  26. T. Wu, Y. Liu, N. Li, G.-W. Huang, C.-B. Qu, and H.-M. Xiao, "Cryogenic Mechanical Properties of Epoxy Resin Toughened by Hydroxyl-Terminated Polyurethane", Polym. Test., 2019, 74, 45-56.  https://doi.org/10.1016/j.polymertesting.2018.11.048
  27. J. Choi, H. Kang, J. H. Lee, S. H. Kwon, and S. G. Lee, "Predicting the Properties of High-Performance Epoxy Resin by Machine Learning Using Molecular Dynamics Simulations", Nanomaterials, 2022, 12, 2353. 
  28. S. Montserrat, G. Andreu, P. Cortes, Y. Calventus, P. Colomer, J. Hutchinson, and J. Malek, "Addition of a Reactive Diluent to a Catalyzed Epoxy-Anhydride System. I. Influence on the Cure Kinetics", J. Appl. Polym. Sci., 1996, 61, 1663-1674.  https://doi.org/10.1002/(SICI)1097-4628(19960906)61:10<1663::AID-APP6>3.0.CO;2-E
  29. D. Tee, M. Mariatti, A. Azizan, C. See, and K. Chong, "Effect of Silane-Based Coupling Agent on the Properties of Silver Nanoparticles Filled Epoxy Composites", Compos. Sci. Technol., 2007, 67, 2584-2591.  https://doi.org/10.1016/j.compscitech.2006.12.007
  30. M. Battistella, M. Cascione, B. Fiedler, M. H. G. Wichmann, M. Quaresimin, and K. Schulte, "Fracture Behaviour of Fumed Silica/Epoxy Nanocomposites", Compos. Part A Appl. Sci. Manuf., 2008, 39, 1851-1858.  https://doi.org/10.1016/j.compositesa.2008.09.010
  31. M. Preghenella, A. Pegoretti, and C. Migliaresi, "Thermo-Mechanical Characterization of Fumed Silica-Epoxy Nanocomposites", Polymer, 2005, 46, 12065-12072.  https://doi.org/10.1016/j.polymer.2005.10.098
  32. X. Yang, F. Meng, X. Zhang, B. Cao, and Y. Fu, "Mesoscopic Simulation of Thermal Conductivities of 3D Carbon Nanotubes, Graphene and Their Epoxy Resin Based Composites", Int. J. Therm. Sci., 2022, 172, 107273. 
  33. M. Li, Y.-Z. Gu, H. Liu, Y.-X. Li, S.-K. Wang, Q. Wu, and Z.-G. Zhang, "Investigation the Interphase Formation Process of Carbon Fiber/Epoxy Composites Using a Multiscale Simulation Method", Compos. Sci. Technol., 2013, 86, 117-121.  https://doi.org/10.1016/j.compscitech.2013.07.008
  34. P. Komarov, A. Markina, and V. Ivanov, "Influence of Surface Modification of Halloysite Nanotubes on Their Dispersion in Epoxy Matrix: Mesoscopic DPD Simulation", Chem. Phys. Lett., 2016, 653, 24-29.  https://doi.org/10.1016/j.cplett.2016.04.058
  35. M. Ionita, "Multiscale Molecular Modeling of SWCNTs/Epoxy Resin Composites Mechanical Behaviour", Compos. B Eng., 2012, 43, 3491-3496.  https://doi.org/10.1016/j.compositesb.2011.12.008
  36. H. Liu, M. Li, Z-Y. Lu, Z-G. Zhang, C-C. Sun, and T. Cui, "Multiscale Simulation Study on the Curing Reaction and the Network Structure in a Typical Epoxy System", Macromolecules, 2011, 44, 8650-8660.  https://doi.org/10.1021/ma201390k
  37. A. A. Askadskiĭ, "Computational Materials Science of Polymers", Camb. Int. Sci. Publ., 2003. 
  38. J. Gou, B. Minaie, B. Wang, Z. Liang, and C. Zhang, "Computational and Experimental Study of Interfacial Bonding of Single-Walled Nanotube Reinforced Composites", Comput. Mater. Sci., 2004, 31, 225-236.  https://doi.org/10.1016/j.commatsci.2004.03.002
  39. R. Nayak, D. P. Tarkes, and A. Satapathy, "A Computational and Experimental Investigation on Thermal Conductivity of Particle Reinforced Epoxy Composites", Comput. Mater. Sci., 2010, 48, 576-581.  https://doi.org/10.1016/j.commatsci.2010.02.025
  40. F. Alvarez, E. Flores, L. Castro, J. Hernandez, A. Lopez, and F. Vazquez, "Dissipative Particle Dynamics (DPD) Study of Crude Oil-Water Emulsions in the Presence of a Functionalized Co-Polymer", Energy Fuels, 2011, 25, 562-567.  https://doi.org/10.1021/ef1012038
  41. R. D. Groot and P. B. Warren, "Dissipative Particle Dynamics: Bridging the Gap Between Atomistic and Mesoscopic Simulation", J. Chem. Phys., 1997, 107, 4423-4435.  https://doi.org/10.1063/1.474784
  42. G. Dorenbos and Y. Suga, "Simulation of Equivalent Weight Dependence of Nafion Morphologies and Predicted Trends Regarding Water Diffusion", J. Memb. Sci., 2009, 330, 5-20.  https://doi.org/10.1016/j.memsci.2008.11.056
  43. M. Y. Xu, and Z. R. Yang, "Dissipative Particle Dynamics Study on the Mesostructures of n-Octadecane/Water Emulsion with Alternating Styrene-Maleic Acid Copolymers as Emulsifier", Soft Matter, 2012, 8, 375-384.  https://doi.org/10.1039/C1SM06378B
  44. S. Yamamoto and S. A. Hyodo, "A Computer Simulation Study of the Mesoscopic Structure of the Polyelectrolyte Membrane Nafion", Polym. J., 2003, 35, 519-527.  https://doi.org/10.1295/polymj.35.519
  45. R. D. Groot and T. J. Madden, "Dynamic Simulation of Diblock Copolymer Microphase Separation", J. Chem. Phys., 1998, 108, 8713-8724.  https://doi.org/10.1063/1.476300
  46. Materials Studio 2019; BIOVIA: San Diego, CA, USA, 2019. 
  47. A. Inamdar, J. Cherukattu, A. Anand, and B. Kandasubramanian, "Thermoplastic-Toughened High-Temperature Cyanate Esters and Their Application in Advanced Composites", Ind. Eng. Chem. Res., 2018, 57, 4479-4504.  https://doi.org/10.1021/acs.iecr.7b05202
  48. P. Yu, G. Li, L. Zhang, F. Zhao, S. Chen, A. I. Dmitriev, and G. Zhang, "Regulating Microstructures of Interpenetrating Polyurethane-Epoxy Networks Towards High-Performance Water-Lubricated Bearing Materials", Tribol. Int., 2019, 131, 454-464. https://doi.org/10.1016/j.triboint.2018.11.010