Acknowledgement
이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.
References
- J. Carter, G. Emmerson, C. L. Faro, P. McGrail, and D. Moore, "The Development of a Low Temperature Cure Modified Epoxy Resin System for Aerospace Composites", Compos. Part A Appl. Sci. Manuf., 2003, 34, 83-91. https://doi.org/10.1016/S1359-835X(02)00115-X
- L. Guadagno, M. Raimondo, V. Vittoria, L. Vertuccio, C. Naddeo, S. Russo, B. De Vivo, P. Lamberti, G. Spinelli, and V. Tucci, "Development of Epoxy Mixtures for Application in Aeronautics and Aerospace", RSC Adv., 2014, 4, 15474-15488. https://doi.org/10.1039/C3RA48031C
- C. May, "Epoxy Resins: Chemistry and Technology", Routledge, 2018.
- S. K. Kim, "Aerospace Applications for Adhesives", Polym. Sci. Technol., 1995, 6, 556-567.
- S. R. Hartshorn, "Structural Adhesives: Chemistry and Technology", Springer Sci. Bus. Media, 2012.
- Z. Ahmadi, "Nanostructured Epoxy Adhesives: A Review", Prog. Org. Coat., 2019, 135, 449-453. https://doi.org/10.1016/j.porgcoat.2019.06.028
- A. De Morais, A. Pereira, J. Teixeira, and N. Cavaleiro, "Strength of Epoxy Adhesive-Bonded Stainless-Steel Joints", Int. J. Adhes. Adhes., 2007, 27. 679-686. https://doi.org/10.1016/j.ijadhadh.2007.02.002
- U. Vietri, L. Guadagno, M. Raimondo, L. Vertuccio, and K. Lafdi, "Nanofilled Epoxy Adhesive for Structural Aeronautic Materials", Compos. B Eng., 2014, 61, 73-83. https://doi.org/10.1016/j.compositesb.2014.01.032
- M. Banea, F. De Sousa, L. Da Silva, R. Campilho, and A. B. de Pereira, "Effects of Temperature and Loading Rate on the Mechanical Properties of a High Temperature Epoxy Adhesive", J. Adhes. Sci. Technol., 2011, 25, 2461-2474. https://doi.org/10.1163/016942411X580144
- F. Seidi, M. Jouyandeh, M. Taghizadeh, A. Taghizadeh, H. Vahabi, S. Habibzadeh, K. Formela, and M. R. Saeb, "Metal-Organic Framework (MOF)/Epoxy Coatings: A Review", Materials, 2020, 13, 2881.
- S. Manouchehri, B. Bagheri, S. H. Rad, M. N. Nezhad, Y. C. Kim, O. O. Park, M. Farokhi, M. Jouyandeh, M. R. Ganjali, and M. K. Yazdi, "Electroactive Bio-Epoxy Incorporated Chitosan-Oligoaniline as an Advanced Hydrogel Coating for Neural Interfaces", Prog. Org. Coat., 2019, 131, 389-396. https://doi.org/10.1016/j.porgcoat.2019.03.022
- R. Singh, M. Zhang, and D. Chan, "Toughening of a Brittle Thermosetting Polymer: Effects of Reinforcement Particle Size and Volume Fraction", J. Mater. Sci., 2002, 37, 781-788. https://doi.org/10.1023/A:1013844015493
- D. Pinto, L. Bernardo, A. Amaro, and S. Lopes, "Mechanical Properties of Epoxy Nanocomposites Using Titanium Dioxide as Reinforcement-A Review", Constr. Build. Mater., 2015, 95, 506-524. https://doi.org/10.1016/j.conbuildmat.2015.07.124
- Y. Jo and Y. Choe, "Mechanical Properties of Core-Shell Rubber (CSR)/Diallyl Phthalate (DAP)/Epoxy Systems for Electronic Packaging Materials", Mol. Cryst. Liq. Cryst., 2011, 539, 190-530. https://doi.org/10.1080/15421406.2011.566126
- S. Ok and Y. Choe, "Impact Optimized Performance of Epoxy/Polyamide/CSR (Core Shell Rubber)/Anhydride Blends at Low Temperature", Mol. Cryst. Liq. Cryst., 2013, 579, 55-61. https://doi.org/10.1080/15421406.2013.805083
- L. Calabrese and A. Valenza, "Effect of CTBN Rubber Inclusions on the Curing Kinetic of DGEBA-DGEBF Epoxy Resin", Eur. Polym. J., 2003, 39, 1355-1363. https://doi.org/10.1016/S0014-3057(02)00390-7
- J. L. Tack and D. M. Ford, "Thermodynamic and Mechanical Properties of Epoxy Resin DGEBF Crosslinked with DETDA by Molecular Dynamics", J. Mol. Graph. Model., 2008, 26, 1269-1275. https://doi.org/10.1016/j.jmgm.2007.12.001
- H. Miyagawa and L. T. Drzal, "Thermo-Physical and Impact Properties of Epoxy Nanocomposites Reinforced by Single-Wall Carbon Nanotubes", Polymer, 2004, 45, 5163-5170. https://doi.org/10.1016/j.polymer.2004.05.036
- G. George, P. Cole-Clarke, N. St. John, and G. Friend, "Real-Time Monitoring of the Cure Reaction of a TGDDM/DDS Epoxy Resin Using Fiber Optic FT-IR", J. Appl. Polym. Sci., 1991, 42, 643-657. https://doi.org/10.1002/app.1991.070420310
- J. Zhou and J. P. Lucas, "Hygrothermal Effects of Epoxy Resin. Part I: The Nature of Water in Epoxy", Polymer, 1999, 40, 5505-5512. https://doi.org/10.1016/S0032-3861(98)00790-3
- B.-G. Min, Z. Stachurski, J. Hodgkin, and G. Heath, "Quantitative Analysis of the Cure Reaction of DGEBA/DDS Epoxy Resins Without and with Thermoplastic Polysulfone Modifier Using Near Infra-Red Spectroscopy", Polymer, 1993, 34, 3620-3627. https://doi.org/10.1016/0032-3861(93)90046-D
- Y. Rosetti, P. Alcouffe, J.-P. Pascault, J.-F. Gerard, and F. Lortie, "Polyether Sulfone-Based Epoxy Toughening: From Micro-To Nano-Phase Separation via PES End-Chain Modification and Process Engineering", Materials, 2018, 11, 1960.
- X. Lu, P. Nautiyal, J. Bustillos, A. Loganathan, C. Zhang, Y. Chen, B. Boesl, and A. Agarwal, "Hydroxylated Boron Nitride Nanotube-Reinforced Polyvinyl Alcohol Nanocomposite Films with Simultaneous Improvement of Mechanical and Thermal Properties", Polym. Compos., 2020, 41, 5182-5194. https://doi.org/10.1002/pc.25785
- K. Mimura, H. Ito, and H. Fujioka, "Improvement of Thermal and Mechanical Properties by Control of Morphologies in PES-Modified Epoxy Resins", Polymer, 2000, 41, 4451-4459. https://doi.org/10.1016/S0032-3861(99)00700-4
- H. H. Wang and J. C. Chen, "Toughening of Epoxy Resin by Reacting with Functional Terminated-Polyurethanes", J. Appl. Polym. Sci., 1995, 57, 671-677. https://doi.org/10.1002/app.1995.070570603
- T. Wu, Y. Liu, N. Li, G.-W. Huang, C.-B. Qu, and H.-M. Xiao, "Cryogenic Mechanical Properties of Epoxy Resin Toughened by Hydroxyl-Terminated Polyurethane", Polym. Test., 2019, 74, 45-56. https://doi.org/10.1016/j.polymertesting.2018.11.048
- J. Choi, H. Kang, J. H. Lee, S. H. Kwon, and S. G. Lee, "Predicting the Properties of High-Performance Epoxy Resin by Machine Learning Using Molecular Dynamics Simulations", Nanomaterials, 2022, 12, 2353.
- S. Montserrat, G. Andreu, P. Cortes, Y. Calventus, P. Colomer, J. Hutchinson, and J. Malek, "Addition of a Reactive Diluent to a Catalyzed Epoxy-Anhydride System. I. Influence on the Cure Kinetics", J. Appl. Polym. Sci., 1996, 61, 1663-1674. https://doi.org/10.1002/(SICI)1097-4628(19960906)61:10<1663::AID-APP6>3.0.CO;2-E
- D. Tee, M. Mariatti, A. Azizan, C. See, and K. Chong, "Effect of Silane-Based Coupling Agent on the Properties of Silver Nanoparticles Filled Epoxy Composites", Compos. Sci. Technol., 2007, 67, 2584-2591. https://doi.org/10.1016/j.compscitech.2006.12.007
- M. Battistella, M. Cascione, B. Fiedler, M. H. G. Wichmann, M. Quaresimin, and K. Schulte, "Fracture Behaviour of Fumed Silica/Epoxy Nanocomposites", Compos. Part A Appl. Sci. Manuf., 2008, 39, 1851-1858. https://doi.org/10.1016/j.compositesa.2008.09.010
- M. Preghenella, A. Pegoretti, and C. Migliaresi, "Thermo-Mechanical Characterization of Fumed Silica-Epoxy Nanocomposites", Polymer, 2005, 46, 12065-12072. https://doi.org/10.1016/j.polymer.2005.10.098
- X. Yang, F. Meng, X. Zhang, B. Cao, and Y. Fu, "Mesoscopic Simulation of Thermal Conductivities of 3D Carbon Nanotubes, Graphene and Their Epoxy Resin Based Composites", Int. J. Therm. Sci., 2022, 172, 107273.
- M. Li, Y.-Z. Gu, H. Liu, Y.-X. Li, S.-K. Wang, Q. Wu, and Z.-G. Zhang, "Investigation the Interphase Formation Process of Carbon Fiber/Epoxy Composites Using a Multiscale Simulation Method", Compos. Sci. Technol., 2013, 86, 117-121. https://doi.org/10.1016/j.compscitech.2013.07.008
- P. Komarov, A. Markina, and V. Ivanov, "Influence of Surface Modification of Halloysite Nanotubes on Their Dispersion in Epoxy Matrix: Mesoscopic DPD Simulation", Chem. Phys. Lett., 2016, 653, 24-29. https://doi.org/10.1016/j.cplett.2016.04.058
- M. Ionita, "Multiscale Molecular Modeling of SWCNTs/Epoxy Resin Composites Mechanical Behaviour", Compos. B Eng., 2012, 43, 3491-3496. https://doi.org/10.1016/j.compositesb.2011.12.008
- H. Liu, M. Li, Z-Y. Lu, Z-G. Zhang, C-C. Sun, and T. Cui, "Multiscale Simulation Study on the Curing Reaction and the Network Structure in a Typical Epoxy System", Macromolecules, 2011, 44, 8650-8660. https://doi.org/10.1021/ma201390k
- A. A. Askadskiĭ, "Computational Materials Science of Polymers", Camb. Int. Sci. Publ., 2003.
- J. Gou, B. Minaie, B. Wang, Z. Liang, and C. Zhang, "Computational and Experimental Study of Interfacial Bonding of Single-Walled Nanotube Reinforced Composites", Comput. Mater. Sci., 2004, 31, 225-236. https://doi.org/10.1016/j.commatsci.2004.03.002
- R. Nayak, D. P. Tarkes, and A. Satapathy, "A Computational and Experimental Investigation on Thermal Conductivity of Particle Reinforced Epoxy Composites", Comput. Mater. Sci., 2010, 48, 576-581. https://doi.org/10.1016/j.commatsci.2010.02.025
- F. Alvarez, E. Flores, L. Castro, J. Hernandez, A. Lopez, and F. Vazquez, "Dissipative Particle Dynamics (DPD) Study of Crude Oil-Water Emulsions in the Presence of a Functionalized Co-Polymer", Energy Fuels, 2011, 25, 562-567. https://doi.org/10.1021/ef1012038
- R. D. Groot and P. B. Warren, "Dissipative Particle Dynamics: Bridging the Gap Between Atomistic and Mesoscopic Simulation", J. Chem. Phys., 1997, 107, 4423-4435. https://doi.org/10.1063/1.474784
- G. Dorenbos and Y. Suga, "Simulation of Equivalent Weight Dependence of Nafion Morphologies and Predicted Trends Regarding Water Diffusion", J. Memb. Sci., 2009, 330, 5-20. https://doi.org/10.1016/j.memsci.2008.11.056
- M. Y. Xu, and Z. R. Yang, "Dissipative Particle Dynamics Study on the Mesostructures of n-Octadecane/Water Emulsion with Alternating Styrene-Maleic Acid Copolymers as Emulsifier", Soft Matter, 2012, 8, 375-384. https://doi.org/10.1039/C1SM06378B
- S. Yamamoto and S. A. Hyodo, "A Computer Simulation Study of the Mesoscopic Structure of the Polyelectrolyte Membrane Nafion", Polym. J., 2003, 35, 519-527. https://doi.org/10.1295/polymj.35.519
- R. D. Groot and T. J. Madden, "Dynamic Simulation of Diblock Copolymer Microphase Separation", J. Chem. Phys., 1998, 108, 8713-8724. https://doi.org/10.1063/1.476300
- Materials Studio 2019; BIOVIA: San Diego, CA, USA, 2019.
- A. Inamdar, J. Cherukattu, A. Anand, and B. Kandasubramanian, "Thermoplastic-Toughened High-Temperature Cyanate Esters and Their Application in Advanced Composites", Ind. Eng. Chem. Res., 2018, 57, 4479-4504. https://doi.org/10.1021/acs.iecr.7b05202
- P. Yu, G. Li, L. Zhang, F. Zhao, S. Chen, A. I. Dmitriev, and G. Zhang, "Regulating Microstructures of Interpenetrating Polyurethane-Epoxy Networks Towards High-Performance Water-Lubricated Bearing Materials", Tribol. Int., 2019, 131, 454-464. https://doi.org/10.1016/j.triboint.2018.11.010