DOI QR코드

DOI QR Code

Transmissive-to-Green-to-Black Gradient Color Switching of Electrochromic Fabric Devices with Strong Heat-Absorption Capability

녹색-흑색 그라데이션 전기변색섬유의 제조와 열흡수 특성 연구

  • Do Yeon Kim (School of Chemical Engineering, Pusan National University) ;
  • Jong S. Park (School of Chemical Engineering, Pusan National University)
  • 김도연 (부산대학교 응용화학공학부) ;
  • 박종승 (부산대학교 응용화학공학부)
  • Received : 2023.10.23
  • Accepted : 2023.12.21
  • Published : 2023.12.31

Abstract

Viologen-based electrochromic materials have been frequently reported, with a wide visible range of reversible colors. According to the theory of subtractive color mixing, achromatic black color can be produced by blending the primary chromatic components in proper proportions. However, a single-component black viologen is still rare due to the limited conjugation length required for entire visible light absorption. In this study, we have synthesized an asymmetric viologen that produces a true black color. Furthermore, to fabricate electrochromic fabric devices (ECFDs), the layer-by-layer structure is applied to a polyester fabric substrate, and the conductive electrode is prepared by spray-coating silver nanowire and PEDOT:PSS. The ECFDs exhibit outstanding absorption behaviors with green-to-black gradient color switchings, extending into the near-infrared region. Superb electrochromic behaviors include a low voltage requirement of -2 V, a significant optical contrast of 54.1% at 608 nm, a high coloration efficiency of 192.8 cm2/C, and long-term switching stability for up to 4,000 seconds, with switching times of less than 20 seconds. Additionally, these ECFDs are durable when bent and are resistant to water. Furthermore, the exceptional heat-absorption capability of the resulting black ECFDs is also assessed. The findings illustrate the successful development and potential of color-changing fabric devices, opening up efficient heat-absorbing e-textile applications.

Keywords

Acknowledgement

이 논문은 과학기술정보통신부의 재원으로 한국연구재단의지원을받아수행된연구임(RS-2023-00221396).

References

  1. R. J. Mortimer, L. D. Aubrey, and R. R. John, "Electrochromic Organic and Polymeric Materials for Display Applications", Displays, 2006, 27, 2-18. https://doi.org/10.1016/j.displa.2005.03.003
  2. K. W. Shah, S. X. Wang, D. X. Y. Soo, and J. Xu, "Viologen-Based Electrochromic Materials: From Small Molecules, Polymers and Composites to Their Applications", Polymer, 2019, 11, 1839.
  3. J. W. Kim and J. M. Myoung, "Flexible and Transparent Electrochromic Displays with Simultaneously Implementable Subpixelated Ion Gel-based Viologens by Multiple Patterning", Adv. Funct. Mater., 2019, 29, 1808911.
  4. H. J. Lee, C. Lee, J. Song, Y. J. Yun, Y. Jun, and C. S. Ah, "Electrochromic Devices Based on Ultraviolet-cured Poly(methyl methacrylate) Gel Electrolytes and Their Utilization in Smart Window Applications", J. Mater. Chem. C, 2020, 8, 8747-8754. https://doi.org/10.1039/D0TC00420K
  5. S. Ahmed, A. Ansari, A. S. Haidyrah, A. A. Chaudhary, M. Imran, and A. Khan, "Hierarchical Molecularly Imprinted Inverse Opal-based Platforms for Highly Selective and Sensitive Determination of Histamine", ACS Appl. Polym. Mater., 2022, 4, 2783-2793. https://doi.org/10.1021/acsapm.2c00072
  6. G. K. Pande, J. S. Heo, J. H. Choi, Y. S. Eom, J. Kim, S. K. Park, and J. S. Park, "RGB-to-black Multicolor Electrochromic Devices Enabled with Viologen Functionalized Polyhedral Oligomeric Silsesquioxanes", Chem. Eng., 2021, 420, 130446.
  7. G. K. Pande, F. Sun, R. Pal, and J. S. Park, "Photocurable Allyl Viologens Exhibiting RGB-to-black Electrochromic Switching for Versatile Heat-shielding Capability", Sol. Energy Mater Sol. Cells, 2023, 263, 112579.
  8. S. Macher, M. Rumpel, M. Schott, U. Posset, G. A. Giffin, and P. Lobmann, "Avoiding Voltage-induced Degradation in PET-ITO-based Flexible Electrochromic Devices", ACS Appl. Mater., 2020, 12, 36695-36705. https://doi.org/10.1021/acsami.0c07860
  9. F. Sun, J. H. Eom, D. Y. Kim, G. K. Pande, H. Ju, H. G. Chae, and J. S. Park, "Large-Area Flexible Electrochromic Devices with High-Performance and Low-Power Consumption Enabled by Hydroxyhexyl Viologen-Substituted Polyhedral Oligomeric Silsesquioxane", ACS Sustainable Chem. Eng., 2023, 11, 5756-5763.
  10. S. Sinha, R. Daniels, O. Yassin, M. Baczkowski, M. Tefferi, A. Deshmukh, Y. Cao, and G. Sotzing, "Electrochromic Fabric Displays from a Robust, Open-air Fabrication Technique", Adv. Mater. Technol., 2022, 7, 2100548.
  11. J. H. Choi, G. Balamurugan, G. K. Pande, Y. S. Eom, H. K. Kim, D. E. Cha, and J. S. Park, "Fully Spray-coated Electrochromic Devices Containing Octa-viologen Substituted Polyhedral Oligomeric Silsesquioxane", Thin Solid Films, 2022, 743, 139067.
  12. Y. S. Eom, R. Pal, G. K. Pande, and J. S. Park, "Freely Deformable Electrochromic Fabric Devices Exhibiting Durable Chromatic Switching and All-around Stability", J. Electrochem., 2022, 169, 023509.
  13. Y. Alesanco, A. Vinuales, G. Cabanero, J. Rodriguez, and R. Tena-Zaera, "Colorless to Neutral Color Electrochromic Devices Based on Asymmetric Viologens", ACS Appl. Mater., 2016, 8, 29619-29627. https://doi.org/10.1021/acsami.6b11321
  14. M. Wang, R. H. Han, and X. Han, "Fatty Acidomics: Global Analysis of Lipid Species Containing a Carboxyl Group with a Charge-remote Fragmentation-assisted Approach", Anal. Chem., 2013, 85, 9312-9320. https://doi.org/10.1021/ac402078p
  15. S. M. Hyun, K. Hong, and B. H. Kim, "Preparation and Characterization of Al-doped ZnO Transparent Conducting Thin Film by Sol-Gel Processing", J. Kor. Ceram. Soc., 1996, 33, 149-154.