DOI QR코드

DOI QR Code

Large eddy simulation of a steady hydraulic jump at Fr = 7.3

Fr = 7.3의 정상도수 큰와모의

  • Paik, Joongcheol (Department of Civil and Environmental Engineering, Gangneung-Wonju National University) ;
  • Kim, Byungjoo (Department of Civil and Environmental Engineering, Gangneung-Wonju National University)
  • 백중철 (강릉원주대학교 건설환경공학과) ;
  • 김병주 (강릉원주대학교 대학원 토목공학과)
  • Received : 2023.09.27
  • Accepted : 2023.12.11
  • Published : 2023.12.31

Abstract

The flow passing through river-crossing structures such as weirs and low-fall dams is dominated by rapidly varied flow including hydraulic jump. The intense unsteadiness of flow velocity and free surface profile affects the stability of such hydraulic structures. In particular, the steady hydraulic jump generated at high Froude number conditions includes remarkably air entrainment, making the flow characteristics more complicated. In this study, a large-eddy simulation was performed for turbulence effect and the hybrid VoF technique to simulate the steady hydraulic jump at the Froude number of 7.3 and the Reynolds number of 15,700. The results of the numerical simulation showed that the instantaneous maximum pressure and time-average pressure distribution calculated on the bottom surface downstream of the structure could be reasonably well reproduced being in good agreement with the experimental values. However, the instantaneous minimum pressure distribution in the direct downstream of the structure shows the opposite pattern to the target experimental measurement value. However, the numerical simulation performed in this study is considered to reasonably predict the minimum pressure distributions observed in various experiments conducted at similar conditions. The vertical distributions of flow velocity and air concentration computed in the center of the hydraulic jump were found to be in good agreement with the experimental results measured under similar conditions, showing self-similarity. These results show that the large eddy simulation and hybrid VoF techniques applied in this study can reproduce the hydraulic jump with strong air entrainment and the resulting intense free surface and pressure fluctuations at high Froude number conditions.

보와 저낙차 댐과 같은 하천횡단구조물을 통과하는 흐름은 도수 현상을 동반하는 급변류가 지배적이다. 구조물 하류에서 도수로 인한 유속과 수면의 강한 비정상성은 수공구조물의 안정에 영향을 줄 수 있다. 특히, 높은 Froude 수 조건에서 발생하는 정상도수는 공기연행이 현저하게 발생하여 흐름 특성은 더욱 복잡해진다. 이 연구에서는 Froude 7.3 조건에서 발생하는 정상도수를 모의하기 위해서 큰와모의 기법과 하이브리드 VoF 기법을 이용한 수치모의를 수행하였다. 수치모의 결과는 구조물 하류 바닥면에서 계측된 순간최대압력과 시간평균압력 분포를 유사하게 재현하는 것으로 나타났다. 단, 구조물 직하류에서의 순간최소압력 분포는 대상으로 하는 실험 계측값과 반대의 양상을 보이지만, 유사한 다른 시험과는 같은 양상을 보임으로써 본 연구에서 수행한 수치모의는 합리적으로 압력변동을 예측하는 것으로 판단된다. 도수 중앙부에서의 연직방향 유속분포와 공기농도분포는 유사한 조건의 실험 결과들과 자기상사성을 보이면서 양호하게 일치하는 것으로 나타났다. 이러한 결과는 본 연구에서 적용한 큰와모의 기법과 하이브리드 VoF 기법이 높은 Froude 수 조건에서 강한 공기연행을 동반하는 도수현상을 양호하게 재현할 수 있음을 보여준다.

Keywords

Acknowledgement

이 연구는 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행되었음(No.2021R1A6A1A03044326).

References

  1. Abdul Khader, M.H., and Elango, K. (1974). "Turbulent pressure field beneath a hydraulic jump." Journal of Hydraulic Research, Vol. 12, No. 4, pp. 469-489, doi: 10.1080/00221687409499725.
  2. Armenio, V., Toscano, P., and Fiorotto, V. (2000). "On the effects on a negative step in pressure fluctuations at the bottom of a hydraulic jump." Journal of Hydraulic Research, Vol. 38. pp. 359-368, doi: 10.1080/00221680009498317.
  3. Babaali, H., Shamsai, A., and Vosoughifar, H. (2015). "Computational modeling of the hydraulic jump in the stilling basin with convergence walls using CFD codes." Arabian Journal for Science and Engineering, Vol. 40, pp. 381-395, doi: 10.1007/s13369-014-1466-z.
  4. Carvalho, R.F., and Martins, R. (2009). "Stepped spillway with hydraulic jumps: Application of a numerical model to a scale model of a conceptual prototype." Journal of Hydraulic Engineering, Vol. 135, No. 7, pp. 615-619, doi: 10.1061/(ASCE)HY.1943-7900.000004.
  5. Chanson, H. (2007). "Bubbly flow structure in hydraulic jump." European Journal of Mechanics-B/Fluids, Vol. 26, No. 3, pp. 367-384, doi: 10.1016/j.euromechflu.2006.08.001.
  6. Chanson, H. (2011). "Hydraulic jumps: turbulence and air bubble entrainment." La Houille Blanche, No. 3, pp. 5-16, doi: 10.1051/lhb/2011026.
  7. Chanson, H., and Brattberg, T. (2000). "Experimental study of the air-water shear flow in a hydraulic jump." International Journal of Multiphase Flow, Vol. 26, No. 4, pp. 583-607, doi: 10.1016/S0301-9322(99)00016-6.
  8. Cheng, X., and Chen, X. (2013). "Numerical simulation of dissolved oxygen concentration in water flow over stepped spillways." Water Environment Research, Vol. 85, No. 5, pp. 434-446. https://doi.org/10.2175/106143012X13560205144416
  9. Chern, M.J., and Syamsuri, S. (2013). "Effect of corrugated bed on hydraulic jump characteristic using SPH method." Journal of Hydraulic Engineering, Vol. 139, No. 2, pp. 221-232, doi: 10.1061/(ASCE)HY.1943-7900.0000618.
  10. Chippada, S., Ramaswamy, B., and Wheeler, M.F. (1994). "Numerical simulation of hydraulic jump." International Journal for Numerical Methods in Engineering, Vol. 37, No. 8, pp. 1381-1397, doi: 10.1002/nme.1620370807.
  11. Ead, S.A., and Rajaratnam, N. (2002). "Hydraulic jumps on corrugated beds." Journal of Hydraulic Engineerging, Vol. 128, No. 7, pp. 656-663. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:7(656)
  12. Fiorotto, V., and Rinaldo, A. (1992). "Fluctuating uplift and lining design in spillway stilling basins." Journal of Hydraulic Engineering, Vol. 118, No. 4, pp. 578-596, doi: 10.1061/(ASCE)0733-9429(1992)118:4(578).
  13. Gharangik, A.M., and Chaudhry, M.H. (1991). "Numerical simulation of hydraulic jump." Journal of Hydraulic Engineering, Vol. 117, No. 9, pp. 1195-1211, doi: 10.1061/(ASCE)0733-9429(1991)117:9(1195).
  14. Gualtieri, C., and Chanson, H. (2007). "Experimental analysis of Froude number effect on air entrainment in the hydraulic jump." Environmental Fluid Mechanics, Vol. 7, pp. 217-238, doi: 10.1007/s10652-006-9016-1.
  15. Hager, W.H., Bremen, R., and Kawagoshi, N. (1990). "Classical hydraulic jump: Length of roller." Journal of Hydraulic Research, Vol. 28, pp. 591-608. https://doi.org/10.1080/00221689009499048
  16. Jesudhas, V., Balachandar R., Wang, H., and Murzyn, F. (2020). "Modelling hydraulic jumps: IDDES versus experiments." Environmental Fluid Mechanics, Vol. 20, pp. 393-413. https://doi.org/10.1007/s10652-019-09734-5
  17. Jorrin, N., Benhamadouche, S., Laurence, D., and Prosser R. (2006) "A synthetic-eddy-method for generating inflow conditions for large-eddy simulations." International Journal of Heat and Fluid Flow, Vol. 27, No. 4. pp. 585-593. https://doi.org/10.1016/j.ijheatfluidflow.2006.02.006
  18. Kim, W.-W., and Menon, S. (1995). "A new dynamic one-equation suggrid-scale model for large eddy simulations." 33rd Aerospace Sciences Meeting and Exhibit, Reno, NV, U.S.
  19. Long, D., Steffler, P.M., and Rajaratnam, N. (1991). "A numerical study of submerged hydraulic jumps." Journal of Hydraulic Research, Vol. 29, No. 3, pp. 293-308, doi: 10.1080/00221689109498435
  20. Menter, F.R. (2012). Best practice: Scale-resolving simulations in ANSYS CFD. ANSYS Germany GmbH, Darmstadt, Germany, pp. 1-70.
  21. Mortazavi, M., Le Chenadec, V., Moin, P., and Mani, A. (2016). "Direct numerical simulation of a turbulent hydraulic jump: turbulence statistics and air entrainment." Journal of Fluid Mechanics, Vol. 797, pp. 60-94, doi: 10.1017/jfm.2016.230.
  22. Mossa, M., and Tolve, U. (1998). "Flow visualization in bubbly two-phase hydraulic jump." Journal of Fluids Engineering, Vol. 120, No. 1, pp. 160-165, doi: 10.1115/1.2819641.
  23. Mukha, T., Almeland, S.K., and Bensow, R.E. (2022). "Large-eddy simulation of a classical hydraulic jump: Influence of modeling parameters on the predictive accuracy." Fluids, Vol. 7, 101, doi: 10.3390/fluids7030101.
  24. OpenFOAM (2023). UK, accessed 1 September 2023, <https://www.openfoam.com/>.
  25. Palermo, M., and Pagliara, S. (2018). "Semi-theoretical approach for energy dissipation estimation at hydraulic jumps in rough sloped channels." Journal of Hydraulic Research, Vol. 56, No. 6, pp. 786-795. doi: 10.1080/00221686.2017.1419991.
  26. Park, M., Kim, H.S., Choi, S., and Ryu, Y. (2018). "Experimental study on oscillatory behavior of hydraulic jump roller." Journal of Korean Society of Coastal and Ocean Engineering, Vol. 30, No. 6, pp. 319-325. https://doi.org/10.9765/KSCOE.2018.30.6.319
  27. Rouse, H., Siao, T.T., and Nagaratnam, S. (1958). "Turbulence characteristics of the hydraulic jump." Journal of the Hydraulics Division, Vol. 84, No. 1, pp. 1-30, doi: 10.1061/JYCEAJ.0000161
  28. Schiller, L., and Naumann, A. (1935). "A drag coefficient correlation." Zeitschrift des Vereins Deutscher Ingenieure, Vol. 77, pp. 318-320.
  29. Toso, J.W., and Bowers, C.E. (1988). "Extreme pressures in hydraulic-jump stilling basins. Journal of Hydraulic Engineering, Vol. 114, No. 8, pp. 829-843, doi: 10.1061/(ASCE)0733-9429(1988)114:8(829)
  30. Wang, H., and Chanson, H. (2015). "Air entrainment and turbulent fluctuations in hydraulic jump." Urban Water Journal, Vol. 12, pp. 502-518. https://doi.org/10.1080/1573062X.2013.847464
  31. Wang, H., Felder, S., and Chanson, H. (2014). "An experimental study of turbulent two-phase flow in hydraulic jumps and application of a triple decomposition technique." Experiments in Fluids, Vol. 55, pp. 1-18, doi: 10.1007/s00348-014-1775-8.
  32. Wang, H., Murzyn, Frederic, and Chanson, H. (2015). "Total pressure fluctuations and two-phase flow turbulence in hydraulic jumps." Experiments in Fluids, Vol. 55, 1846. doi: 10.1007/s00348-014-1847-9.
  33. Yoo, H., Lee, S., and Park, M. (2018). "Characteristic analysis of pressure fluctuation and free surface displacement in river-crossing structure through statistical approach." Journal of the Korean Society of Hazard Mitigation, Vol. 18, No. 6, pp. 385-393, doi: 10.9798/KOSHAM.2018.18.6.385.