DOI QR코드

DOI QR Code

Numerical simulations of turbulent flow on the pool and weir type fishway and analysis of ascending possibility of fishes

계단식 어도의 난류흐름 수치해석 및 어류 소상 가능성 분석

  • Kwon, Yong-Joon (Department of Civil and Environmental Engineering, Kunsan National University) ;
  • Ryu, Yonguk (Department of Civil Engineering, Chonnam National University) ;
  • Kim, Hyung Suk (Department of Civil Engineering, Kunsan National University)
  • 권용준 (군산대학교 토목환경공학부) ;
  • 류용욱 (전남대학교 토목공학과) ;
  • 김형석 (군산대학교 토목공학과)
  • Received : 2023.09.24
  • Accepted : 2023.10.27
  • Published : 2023.12.31

Abstract

Fishways are constructed to ensure the fish migration because river-crossing structures such as dams and weirs cut off the stream longitudinal connectivity and influence on aquatic ecosystems. However, the passage efficiency of fishes varies depending on flow characteristics in the fishway and fish species. In this study, three-dimensional numerical simulations are carried out using a RANS model and the volume of fluid method for resolving free surface fluctuations to calculate the turbulent flow in the pool and weir type fishway. The Flow velocity and turbulent kinetic energy in the pool of fishway are analyzed according to variation of the upstream water level and the length of pool. The present numerical simulations reasonably well reproduce the stream flow and plunging flow characteristics in the pool. The simulation results show that the stream flow changes to the plunging flow as the length of the pool increases. When the upstream level increases, the stream flow becomes more evident. Key parameters related to the fish migration within the fishway such as the flow velocity and the turbulent kinetic energy are examined to assess the ascending possibility of fishes.

하천에 설치된 댐, 보 등과 같은 횡단구조물은 수생태계에 영향을 미치며 종적 연결성을 단절하기 때문에 어류의 이동을 확보하기 위하여 어도가 설치된다. 그러나 어도 내부의 흐름 특성 및 어종에 따라 어류의 통과효율의 차이가 발생한다. 본 연구에서는 3차원 RANS 모형과 자유수면 해석을 위한 VOF (volume of fluid)기법을 적용한 수치모형을 활용하여 계단식 어도에서 발생하는 난류흐름을 수치모의 하였다. 계단식 어도의 pool의 길이 변화 및 상류 수위 변동을 고려하였으며 이들의 변화에 따라 평균유속 및 난류운동에너지 분포를 분석하였다. 표면류 및 잠입류 특성을 잘 재현하였으며 pool의 길이가 증가하면서 표면류에서 잠입류로 변화하였고 상류 수위가 증가함에 따라 표면류 특성이 명확하게 나타났다. 어도 내 어류의 이동과 관련된 수리학적 인자는 유속 및 난류운동에너지 등이 있으며 이를 바탕으로 어류의 소상 가능성을 검토하였다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 RS-2021-KA162349).

References

  1. Bermudez, M., Puertas, J., Cea, L., Pena, L., and Balairon, L. (2010). "Influence of pool geometry on the biological efficiency of vertical slot fishways." Ecological Engineering, Vol. 36, No. 10, pp. 1355-1364. https://doi.org/10.1016/j.ecoleng.2010.06.013
  2. Choi, S., Kim, S., Lim, Y., and Yoon, B. (2009). "Flow analysis in the baffled fishway using FLOW-3D." Proceedings of the Korea Water Resources Association Conference, KWRA, pp. 1837-1840.
  3. Duguay, J.M., Lacey, R.W., and Gaucher, J. (2017). "A case study of a pool and weir fishway modeled with OpenFOAM and FLOW-3D." Ecological Engineering, Vol. 103, pp. 31-42. https://doi.org/10.1016/j.ecoleng.2017.01.042
  4. Ead, S.A., Katopodis, C., Sikora, G.J., and Rajaratnam, N. (2004). "Flow regimes and structure in pool and weir fishways." Journal of Environmental Engineering and Science, Vol. 3, No. 2, pp. 379-390. https://doi.org/10.1139/s03-073
  5. Fuentes-Perez, J.F., Quaresma, A.L., Pinheiro A., and Sanz-Ronda, F.J. (2022). "OpenFOAM vs FLOW-3D: A comparative study of vertical slot fishway modelling." Ecological Engineering, Vol. 174, 106446.
  6. Fuentes-Perez, J.F., Silva, A.T., Tuhtan, J.A., Garcia-Vega, A., Carbonell-Baeza, R., Musall, M., and Kruusmaa, M. (2018). "3D modelling of non-uniform and turbulent flow in vertical slot fishways." Environmental Modelling & Software, Vol. 99, pp. 156-169. https://doi.org/10.1016/j.envsoft.2017.09.011
  7. Goodarzi, E., Farhoudi, J., and Shokri, N. (2012). "Flow Characteristics of rectangular broad-crested weirs with sloped upstream face." Journal of Hydrology and Hydromechanics, Vol. 60, No. 2, pp. 87-100. https://doi.org/10.2478/v10098-012-0008-1
  8. Guerrero, J. (2014). Introductory OpenFOAM(R) course from 14th to 18th July 2014, University of Genoa, accessed 9 May 2023, <http://www.arek.pajak.info.pl/wp-content/uploads/2015/03/15turbulenceOF.pdf>.
  9. Guiny, E., Ervine, D.A., and Armstrong, J.D. (2005). "Hydraulic and biological aspects of fish passes for Atlantic salmon." Journal of Hydraulic Engineering, Vol. 131, No. 7, pp. 542-553. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:7(542)
  10. Im, Y. (2010). An analysis of hydraulic characteristics and fish swimming performance associated with distance between baffles in the ice-habor fishway. Master Thesis, University of Myongji, pp. 542-553.
  11. Jun, K., An, S., and Lee. H. (2008). "Analysis of flow in the pool of fishway using FLOW-3D model." Proceedings of the Korea Water Resources Association Conference, KWRA, pp. 1675-1678.
  12. Kirkgoz, M.S., Akoz, M.S., and Alper, A. (2008). "Experimental and theoretical analyses of two-dimensional flows upstream of broad-crested" Canadian Journal of Civil Engineering, Vol. 35, No. 9, pp. 975-986. https://doi.org/10.1139/L08-036
  13. Ko, S., Choi, H., Lee, H., and Rhee1, S. (2015). "Numerical analysis of the hydraulic characteristics of ice-harbor type fishway." Korean Society of Computational Fluids Engineering, Vol. 20, No. 3, pp. 15-19. https://doi.org/10.6112/kscfe.2015.20.3.15
  14. Korea Rural Community Corporation (KRCC) (2019). Korea, accessed 31 August 2023, <www.fishway.go.kr>.
  15. Lee, J. (2020). Accuracy Improvement of open channel turbulent flow modeling in the artificial dune. Master Thesis, University of Incheon, pp. 10-45.
  16. Lee, J., and Kim, M. (2011). "Flow analysis in Nakdong River barrage fishway using Flow-3d" Journal of the Society of Naval Architects of Korea, Vol. 2011, No. 6, pp. 2118-2121.
  17. Lee, S., Oh, K., Cheong, T., and Jeong, S. (2012). "An assessment of fish habitat of natural fishway by hydraulic model experiments and numerical analysis." Journal of Korea Water Resources Associations, Vol. 45, No. 3, pp. 317-329. https://doi.org/10.3741/JKWRA.2012.45.3.317
  18. Li, G., Sun, S., Zhang, C., Liu, H., and Zheng, T. (2019). "Evaluation of flow patterns in vertical slot fishways with different slot positions based on a comparison passage experiment for juvenile grass carp." Ecological Engineering, Vol. 133, pp. 148-159. https://doi.org/10.1016/j.ecoleng.2019.04.008
  19. Marriner, B.A., Baki, A.M., Zhu, D.Z., Thiem, J.D., Cooke, S.J., and Katopodis, C. (2014). "Field and numerical assessment of turning pool hydraulics in a vertical slot fishway." Ecological Engineering, Vol. 63, pp. 88-101. https://doi.org/10.1016/j.ecoleng.2013.12.010
  20. Menter, F.R., Kuntz, M., and Langtry, R. (2003). "Ten years of industrial experience with the SST turbulence model." Springer Nature, Vol. 4, pp. 625-632.
  21. Ministry of Land, Infrastructure and Transport (MLIT) (2018). KDS 51 40 10, Korea Construction, accessed 31 August 2023, <https://www.kcsc.re.kr/StandardCode/Viewer/30132/>.
  22. Misheel, B., Kim, K., Min, K., and Jang, M. (2019). "Swimming performance evaluation of four freshwater fish species from the South Korea." The Korean Society of Limnology, Vol. 52, No. 2, pp. 118-125. https://doi.org/10.11614/KSL.2019.52.2.118
  23. OpenCFD Ltd (2005). England, accessed 30 August 2023, <www.openfoam.com>.
  24. Park, J., Koo, Y., Baek, K., and Kim, Y. (2015). "Assessment of attraction efficiency of by-pass fishway at Dalseong weir according to operating attraction waterway." Korean Society on Water Environment, Vol. 31, No. 1, pp. 1-11. https://doi.org/10.15681/KSWE.2015.31.1.1
  25. Park, S., Kim, S., Lee, S. and Yoon, B. (2008). "An experimental study on the swimming performance of pale chub (Zacco platypus)." Journal of Korea Water Resources Associations, Vol. 41, No.4, pp. 423-432. https://doi.org/10.3741/JKWRA.2008.41.4.423
  26. Quaranta, E., Katopodis, C., Revelli, R., and Comoglio, C. (2017). "Turbulent flow field comparison and related suitability for fish passage of a standard and a simplified low-gradient vertical slot fishway." River Resaerch and Applications, Vol. 33, No. 8, pp. 1295-1305. https://doi.org/10.1002/rra.3193
  27. Rajaratnam, N., and Katopodis, C. (1988). "Plunging and streaming flows in pool and weir fishways." Journal of Hydraulic Engineering, Vol. 114, No. 8, pp. 939-944. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(939)
  28. Sanagiotto, D.G., Rossi, J.B., Lauffer, L.L., and Bravo1, J.M. (2019). "Three-dimensional numerical simulation of flow in vertical slot fishways: Validation of the model and characterization of the flow." Brazilian Journal of Water Resources, Vol. 24, No. 20, pp. 1-14. https://doi.org/10.1590/2318-0331.241920180174
  29. Silva, A., Santos, J., Ferreira, M., Pinheiro, A., and Katopodis, C. (2011). "Effects of water velocity and turbulence on the behaviour of Iberian barbell (luciobarbus bocagei, Steindachner 1864) in an experimental pool-type fishway." River Resaerch and Applications, Vol. 27, No. 3, pp. 360-373. https://doi.org/10.1002/rra.1363
  30. Woo, H., Lee, J., and Kim, G. (1995). "Fish story in the river (II)-Current status of the river in Korea." Journal of Korea Water Resources Associations, Vol. 28, No. 6, pp. 54-62.