DOI QR코드

DOI QR Code

단일 UAV를 이용한 해안 지형 측량

Survey of coastal topography using images from a single UAV

  • 노효섭 (서울대학교 건설환경공학부) ;
  • 김병욱 (서울대학교 건설환경공학부) ;
  • 이민재 (서울대학교 건설환경공학부) ;
  • 박용성 (서울대학교 건설환경공학부) ;
  • 방기영 (지오시스템리서치 수치모델링연구소) ;
  • 유호준 (지오시스템리서치 연안관리부)
  • Noh, Hyoseob (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Kim, Byunguk (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Lee, Minjae (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Park, Yong Sung (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Bang, Ki Young (Department of Institute of Numerical Modeling, Geo System Research Corporation) ;
  • Yoo, Hojun (Department of Coastal Management, Geo System Research Corporation)
  • 투고 : 2023.09.25
  • 심사 : 2023.10.24
  • 발행 : 2023.12.31

초록

해안 환경에서 정확한 지형 조사는 필수적이나 지점식 조사 기법이 일반적이며, 이마저도 육상과 해저면을 독립적으로 계측한다. 본 연구에서는 단일 UAV만을 이용해 육상 및 해저 지형을 측량하는 방법을 소개한다. 세부적으로, UAV 영상을 활용해 지형 및 수심을 계측하는 두 알고리즘을 각각 적용한 뒤 결과물을 정합하여 수행된다. 해빈 지형의 취득은 공간 스캔 영상을 이용하는 Structure-from-Motion Multi-View Stereo 기술이 적용된다. 해저 지형 측량을 위해서는 고정비행으로 취득된 시계열 파랑 영상을 이용하는 분산관계식 기반 수심 역산 기법이 적용된다. 두 요소기술로 산정한 수치 표고모형을 좌표에 따라 정합한 후, 쇄파대 및 포말대와 같이 두 요소기술 적용이 불가능한 부분을 내삽하여 최종적으로 연속된 근해역 지형을 취득할 수 있다. 본 UAV 기반 지형 측량 기법을 경상북도 포항시의 장사해수욕장에 적용한 결과 세부적인 지형적 특징을 재현해낼 수 있었다. 본 연구에서 제안되는 통합 모니터링 방법은 기존 방법들에 비해 시간, 비용, 안전 측면에서 이점이 있어 해안지역의 침퇴적 분석에 효과적으로 적용될 수 있을 것으로 기대된다.

Coastal topographic information is crucial in coastal management, but point measurment based approeaches, which are labor intensive, are generally applied to land and underwater, separately. This study introduces an efficient method enabling land and undetwater surveys using an unmanned aerial vehicle (UAV). This method involves applying two different algorithms to measure the topography on land and water depth, respectively, using UAV imagery and merge them to reconstruct whole coastal digital elevation model. Acquisition of the landside terrain is achieved using the Structure-from-Motion Multi-View Stereo technique with spatial scan imagery. Independently, underwater bathymetry is retrieved by employing a depth inversion technique with a drone-acquired wave field video. After merging the two digital elevation models into a local coordinate, interpolation is performed for areas where terrain measurement is not feasible, ultimately obtaining a continuous nearshore terrain. We applied the proposed survey technique to Jangsa Beach, South Korea, and verified that detailed terrain characteristics, such as berm, can be measured. The proposed UAV-based survey method has significant efficiency in terms of time, cost, and safety compared to existing methods.

키워드

과제정보

본 연구는 2023년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행되었습니다(RS-2023-00256687, 순환적응형 연안침식 관리기술 개발).

참고문헌

  1. Ashphaq, M., Srivastava, P.K., and Mitra, D. (2021). "Review of near-shore satellite derived bathymetry: Classification and account of five decades of coastal bathymetry research." Journal of Ocean Engineering and Science Vol. 6, pp. 340-359. https://doi.org/10.1016/j.joes.2021.02.006
  2. Bell, P.S. (1999). "Shallow water bathymetry derived from an analysis of X-band marine radar images of waves." Coastal Engineering, Vol. 37, No. 3-4, pp. 513-527. doi: 10.1016/S0378-3839(99)00041-1
  3. Benetazzo, A., Gamba, M., and Barbariol, F. (2017). "Unseeded Large Scale PIV measurements accounting for capillary - gravity waves phase speed." Rendiconti Lincei, Vol. 2, pp. 393-404. https://doi.org/10.1007/s12210-017-0606-2
  4. Bergsma, E.W.J., and Almar, R. (2018). "Video-based depth inversion techniques, a method comparison with synthetic cases." Coastal Engineering, Vol. 138, pp. 199-209. doi: 10.1016/j.coastaleng.2018.04.025
  5. Caballero, I., and Stumpf, R.P. (2021). "On the use of Sentinel-2 satellites and lidar surveys for the change detection of shallow bathymetry: The case study of North Carolina inlets." Coastal Engineering, Vol. 169, 103936.
  6. Chang, K.M. (2010). "Ensemble empirical mode decomposition for high frequency ECG noise reduction." Biomedical Engineering / Biomedizinische Technik, Vol. 55, pp. 193-201. doi: 10.1515/BMT.2010.030.
  7. Chenier, R., Faucher, M.A., and Ahola, R. (2018). "Satellite-derived bathymetry for improving Canadian Hydrographic Service charts." ISPRS International Journal of Geo-Information, Vol. 7, No. 8, 306.
  8. Duchon, C.E. (1979). "Lanczos filtering in one and two dimensions." Journal of Applied Meteorology and Climatology, Vol. 18, No. 8, pp. 1016-1022. https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
  9. Dugan, J.P., Piotrowski, C.C., and Williams, J.Z. (2001). "Water depth and surface current retrievals from airborne optical measurements of surface gravity wave dispersion." Journal of Geophysical Research: Oceans, Vol. 106. No. C8, pp. 16903-16915. https://doi.org/10.1029/2000JC000369
  10. Fischler, M.A., and Bolles, R.C. (1981). "Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography." Communications of the ACM, Vol. 24, No. 6, pp. 381-395.
  11. Fujita, I., Muste, M., and Kruger, A. (1998). "Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications." Journal of hydraulic Research, Vol. 36, No. 3, pp. 397-414. https://doi.org/10.1080/00221689809498626
  12. Gawehn, M., de Vries, S., and Aarninkhof, S. (2021). "A selfadaptive method for mapping coastal bathymetry on-the-fly from wave field video." Remote Sensing, Vol. 13, No. 23, 4742.
  13. Genchi, S.A., Vitale, A.J., Perillo, G.M., Seitz, C., and Delrieux, C.A. (2020). "Mapping topobathymetry in a shallow tidal environment using low-cost technology." Remote Sensing, Vol. 12, No. 9, 1394.
  14. Gesch, D.B., Brock, J.C., Parrish, C.E., Rogers, J.N., and Wright, C.W. (2016). "Introduction: Special issue on advances in topobathymetric mapping, models, and applications." Journal of Coastal Research, Vol. 76, pp. 1-3. https://doi.org/10.2112/SI76-001
  15. Halls, J., and Costin, K. (2016). "Submerged and emergent land cover and bathymetric mapping of estuarine habitats using worldView-2 and LiDAR imagery." Remote Sensing, Vol. 8, No. 9, 718.
  16. Harry, M., Zhang, H., Lemckert, C., Colleter, G., and Blenkinsopp, C. (2018). "Observation of surf zone wave transformation using LiDAR." Applied Ocean Research, Vol. 78, pp. 88-98. https://doi.org/10.1016/j.apor.2018.05.015
  17. Holman, R., and Bergsma, E.W. (2021). "Updates to and performance of the cbathy algorithm for estimating nearshore bathymetry from remote sensing imagery." Remote Sensing, Vol. 13, No. 19, 3996.
  18. Holman, R., Plant, N., and Holland, T. (2013). "cBathy: A robust algorithm for estimating nearshore bathymetry" Journal of Geophysical Research: Oceans, Vol. 118, No. 5, pp. 2595-2609. https://doi.org/10.1002/jgrc.20199
  19. Kim, B., Noh, H., Park, Y.S., and Lee, M. (2023). "Non-spectral linear depth inversion using drone-acquired wave field imagery." Applied Ocean Research, Vol. 138, 103625.
  20. Lee, Z., Carder, K.L., Mobley, C.D., Steward, R.G., and Patch, J.S. (1999). "Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization." Applied Optics, Vol. 38, No. 18, pp. 3831-3843. https://doi.org/10.1364/AO.38.003831
  21. Lowe, D.G. (2004). "Distinctive image features from scale-invariant keypoints." International Journal of Computer Vision, Vol. 60, pp. 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  22. Lyzenga, D.R. (1978). "Passive remote sensing techniques for mapping water depth and bottom features." Applied Optics, Vol. 17, No. 3, pp. 379-383. doi: 10.1364/ao.17.000379
  23. Ma, S., Tao, Z., Yang, X., Yu, Y., Zhou, X., and Li, Z. (2014). "Bathymetry retrieval from hyperspectral remote sensing data in optical-shallow water." IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 2, pp. 1205-1212. doi: 10.1109/TGRS.2013.2248372
  24. Ma, S., Tao, Z., Yang, X., Yu, Y., Zhou, X.,and Li, Z. (2013). "Bathymetry retrieval from hyperspectral remote sensing data in optical-shallow water." IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 2, pp. 1205-1212.
  25. Ma, Y., Yue, B., Chenier, R., Omari, K., and Henschel, M. (2021). "Nearshore bathymetry estimation using synthetic aperture radar (SAR) imagery." Canadian Journal of Remote Sensing, Vol. 47, No. 6, pp. 790-801. https://doi.org/10.1080/07038992.2021.1954499
  26. Madhukar, B.N., and Narendra, R. (2013). "Lanczos resampling for the digital processing of remotely sensed images." In Proceedings of International Conference on VLSI, Communication, Advanced Devices, Signals & Systems and Networking (VCASAN-2013), Pune, India, pp. 403-411.
  27. Muste, M., Fujita, I., and Hauet, A. (2008). "Large-scale particle image velocimetry for measurements in riverine environments." Water Resources Research, Vol. 44, No. 4, W00D19, doi: 10.1029/2008WR006950.
  28. Nakano, T., Kamiya, I., Tobita, M., Iwahashi, J., and Nakajima, H. (2014). "Landform monitoring in active volcano by UAV and SFM-MVS technique." The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol, 40, pp. 71-75. https://doi.org/10.5194/isprsarchives-XL-8-71-2014
  29. Pikelj, K., Ruzic, I., Ilic, S., James, M.R., and Kordic, B. (2018). "Implementing an efficient beach erosion monitoring system for coastal management in Croatia." Ocean & Coastal Management, Vol 156, pp. 223-238.
  30. Pix4D (2023). PIX4Dmapper: Professional photogrammetry software for drone mapping, accessed 22 September 2023, <https://www.pix4d.com/kr/product/pix4dmapper-photogrammetry-software/>.
  31. Richter, K., and Maas, H.G. (2022). "Radiometric enhancement of full-waveform airborne laser scanner data for volumetric representation in environmental applications." ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 183, pp. 510-524. https://doi.org/10.1016/j.isprsjprs.2021.10.021
  32. Sandidge, J.C., and Holyer, R.J. (1998). "Coastal bathymetry from hyperspectral observations of water radiance." Remote Sensing of Environment, Vol. 65, No. 3, pp. 341-352. https://doi.org/10.1016/S0034-4257(98)00043-1
  33. Scharstein, D., and Szeliski, R. (2002). "A taxonomy and evaluation of dense two-frame stereo correspondence algorithms." International Journal of Computer Vision, Vol. 47, pp. 7-42. https://doi.org/10.1023/A:1014573219977
  34. Senet, C.M., Seemann, J., Flampouris, S., and Ziemer, F., 2008. "Determination of bathymetric and current maps by the method DiSC based on the analysis of nautical X-band radar image sequences of the sea surface (November 2007)." IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 8, pp. 2267-2279. doi: 10.1109/TGRS.2008.916474.
  35. Simarro, G., and Calvete, D. (2022). "UBathy (v2.0): A software to obtain the bathymetry from video imagery." Remote Sensing, Vol. 14, No. 23, 6139.
  36. Simarro, G., Calvete, D., Luque, P., Orfila, A., and Ribas, F. (2019). "UBathy: A new approach for bathymetric inversion from video imagery." Remote Sensing, Vol. 11, No. 23, 2722.
  37. Szeliski, R., and Kang, S.B. (1994). "Recovering 3D shape and motion from image streams using nonlinear least squares." Journal of Visual Communication and Image Representation Vol. 5, No. 1, pp. 10-28. https://doi.org/10.1006/jvci.1994.1002
  38. Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., and Reynolds, J.M. (2012). "'Structure-from-Motion' photogrammetry: A low-cost, effective tool for geoscience applications." Geomorphology, Vol. 179, pp. 300-314. https://doi.org/10.1016/j.geomorph.2012.08.021
  39. Wu, Z., and Huang, N.E. (2009). "Ensemble empirical mode decomposition: A noise-assisted data analysis method." Advances in Adaptive Data Analysis, Vol. 1, No. 01, pp. 1-41.  https://doi.org/10.1142/S1793536909000047