DOI QR코드

DOI QR Code

낙동강 - 남강 합류부 대하천 규모 수리학적 혼합특성 연구

Hydraulic mixing characteristics at a large-scale confluence of Nakdong and Nam River

  • 최수인 (단국대학교 토목환경공학과) ;
  • 김동수 (단국대학교 토목환경공학과) ;
  • 김영도 (명지대학교 토목환경공학과) ;
  • 류시완 (창원대학교 토목공학과)
  • Choi, Suin (Department of Civil & Environmental Engineering, Dankook University) ;
  • Kim, Dongsu (Department of Civil & Environmental Engineering, Dankook University) ;
  • Kim, Youngdo (Department of Civil & Environmental Engineering, Myongji University) ;
  • Lyu, Siwan (Department of Civil Engineering, Changwon University)
  • 투고 : 2023.09.20
  • 심사 : 2023.10.19
  • 발행 : 2023.12.31

초록

하천의 합류부는 본류와 지류가 만나 복잡한 혼합거동을 보이는 지역으로 두 하천이 혼합되지 않은 채 하류로 이동하는 현상이 발생하기도 한다. 하천이 혼합되지 않고 유지되면 하천의 수질 관리에 어려움을 주거나 남강 합류부 인근 취수장(칠서)에서 취수되는 수체의 특성이 모호할 수 있다. 본 연구에서는 드론 영상과 수질 인자 전기전도도, 수리 인자 2차류를 통해 낙동강과 남강 합류부에서의 혼합거동을 면밀하게 분석하였다. 2차류의 분석은 Rozovskii 방법을 기반으로 2중 나선형 구조의 확인이 용이하게 하였다. 연구 결과 만곡의 영향으로 인해 혼합이 방해 받고 있음을 2차류 분포와 전기전도도 분포의 비교 분석을 통해 확인하였으며, 낙동강-남강 합류부 하류의 칠서 정수장은 해당 시기 혼합되지 않은 남강 수체를 취수하고 있음을 확인하였다.

The confluence of rivers, where rivers meet, is a place known for complex water mixing dynamics. Sometimes, these rivers flow downstream without mixing. While this non-mixing can pose challenges for water quality management, it also offers the potential for improved water extraction in nearby water intakes (Chilseo). In this study, we analyzed the mixing dynamics at the confluence of the Nakdong River and the Nam River using drone imagery, water quality indicators like Electrical Conductivity, and hydraulic factor Secondary Flow. We found that meandering effects hindered mixing, as shown by the comparison of Secondary Flow and Electrical Conductivity distributions. Additionally, the Chilseo Water Purification Plant downstream of the Nakdong River-Nam River confluence extracted unmixed Nam River water during certain periods.

키워드

과제정보

본 연구는 환경부 미세플라스틱 측정 및 위해성 평가 기술개발사업(202100311003) 및 낙동강수계관리위원회 연구용역과제(수질변화 예측을 위한 남강과 낙동강 합류부의 수체혼합 유동분석)의 연구비 지원에 의하여 연구되었으며 이에 감사드립니다.

참고문헌

  1. Ashmore, P., and Parker, G. (1983). "Confluence scour in coarse braided streams." Water Resources Research, Vol. 19, No. 2, pp. 392-402. https://doi.org/10.1029/WR019i002p00392
  2. Baranya, S., Jozsa, J., and Napoli, E. (2010). "Field and numerical study of river confluence flow structures." Fifth International Conference on Fluvial Hydraulics, River Flow 2010, Braunschweig, Germany, pp. 223-241.
  3. Best, J.L. (1986). "The morphology of river channel confluences." Progress in Physical Geography, Vol. 10, No, 2, pp, 157-174. https://doi.org/10.1177/030913338601000201
  4. Best, J.L. (1987). "Flow dynamics at river channel confluences: Implications for sediment transport and bed morphology." Recent Developments in Fluvial Sedimentology, Vol. SP39, pp. 27-35. https://doi.org/10.2110/pec.87.39.0027
  5. Best, J.L. (1988). "Sediment transport and bed morphology at river channel confluences." Sedimentology, Vol. 35, No, 3, pp. 481-498. https://doi.org/10.1111/j.1365-3091.1988.tb00999.x
  6. Best, J.L., and Rhoads, B.L. (2008). "Sediment transport, bed morphology and the sedimentology of river channel confluences." Sedimentology, Vol. 35, No. 3, pp. 481-498. https://doi.org/10.1111/j.1365-3091.1988.tb00999.x
  7. Best, J.L., and Roy, A.G. (1991) "Mixing-layer distortion at the confluence of channels of different depth." Nature, Vol. 350, No. 6317, pp. 411-413. https://doi.org/10.1038/350411a0
  8. Biron, P.M., Richer, A., Kirkbride, A.D., Roy, A.G., and Han, S. (2002). "Spatial patterns of water surface topography at a river confluence." Earth Surface Processes and Landforms, Vol. 27, No. 9, pp. 913-928. https://doi.org/10.1002/esp.359
  9. Biron, P.M., Roy, A.G., Best, J.L., and Boyer, C.J. (1993a). "Bed morphology and sedimentology at the confluence of unequal depth channels." Geomorphology, Vol. 8, No. 2-3, pp. 115-129. https://doi.org/10.1016/0169-555X(93)90032-W
  10. Biron, P.M., Serres, B.D., Roy, A.G., and Best, J.L. (1993b). "Shear layer turbulence at an unequal depth channel confluence." Turbulence: Perspectives on Flow and Sediment Transfer, Edited by Clifford, N.J., French, J.R., Hardisty, J., John Wiley & Sons, Chichester, England, pp. 197-213.
  11. Boyer, C., Roy, A.G., and Best, J.L. (2006). "Dynamics of a river channel confluence with discordant beds: Flow turbulence, bed load sediment transport, and bed morphology." Journal of Geophysical Research: Earth Surface, Vol. 111, No. F4, F04007.
  12. Bradbrook, K.F., Lane, S.N., and Richards, K.S. (2000). "Numerical simulation of three-dimensional, time-averaged flow structure at river channel confluences." Water Resources Research, Vol. 36, No. 9, pp. 2731-2746. https://doi.org/10.1029/2000WR900011
  13. Bradbrook, K.F., Lane, S.N., Richards, K.S., Biron, P.M., and Roy, A.G. (2001). "Role of bed discordance at asymmetrical river confluences." Journal of Hydraulic Engineering, Vol. 127, No. 5, pp. 351-368. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:5(351)
  14. Kim, D., Winkler, M., and Muste, M. (2015). "A GIS-based Computational tool for multidimensional flow velocity by acoustic doppler current profilers." Journal of Physics: Conference Series, Vol. 622, No. 1, 012024.
  15. Kim, J., Lee, S., Bang, H., and Hwang, S. (2009). "Characteristics of algae occurrence in lake Paldang." Journal of Korea Society of Environmental Engineers, Vol. 31, No. 5, pp. 325-331.
  16. Lane, S.N., Bradbrook, K.F., Richards, K.S., Biron, P.M., and Roy, A.G. (1999). "Time-averaged flow structure in the central region of a stream confluence: A discussion." Earth Surface Processes and Landforms, Vol. 24, No. 4, pp. 361-367. https://doi.org/10.1002/(SICI)1096-9837(199904)24:4<361::AID-ESP982>3.0.CO;2-5
  17. Lane, S.N., Bradbrook, K.F., Richards, K.S., Biron, P.M., and Roy, A.G. (2000). "Secondary circulation cells in river channel confluences: Measurement artefacts or coherent flow structures?" Hydrol. Processes, Vol. 14, No. 11-12, pp. 2047-2071. https://doi.org/10.1002/1099-1085(20000815/30)14:11/12<2047::AID-HYP54>3.0.CO;2-4
  18. Lane, S.N., Parsons, D.R., Best, J.L., Orfeo, O., Kostaschuk, R.A., and Hardy, R.J. (2008). "Causes of rapid mixing at a junction of two large rivers: Rio Parana and Rio Paraguay, Argentina." Journal of Geophysical Research: Earth Surface, Vol. 113, No. F2, F000745, doi: 10.1029/2006JF000745.
  19. Laraque, A., Guyot, J.L., and Filizola, N. (2009). "Mixing processes in the Amazon River at the confluences of the Negro and Solimoes Rivers, Encontro das Aguas, Manaus, Brazil." Hydrological Processes: An International Journal, Vol. 23, No.22, pp. 3131-3140. https://doi.org/10.1002/hyp.7388
  20. Martin-Vide, J.P., Plana-Casado, A., Sambola, A., and Capape, S. (2015). "Bedload transport in a river confluence." Geomorphology, Vol. 250, pp. 15-28. https://doi.org/10.1016/j.geomorph.2015.07.050
  21. Morell, M.I. (2015). On the Rozovskii method to insolate secondary circulation from skewed flow. Ph. D. Dissertation, University Nacional del Litoral, Santa Fe, Argentina, pp.21-23.
  22. Mosley, M.P. (1975). An experimental study of channel confluences: Unpub.Ph. D. dissertation, Colorado State University, Fort Collins, CO, U.S., p. 216.
  23. Mosley, M.P. (1976). "An experimental study of channel confluences." The Journal of Geology, Vol. 84, No. 5, pp. 535-562. https://doi.org/10.1086/628230
  24. Mosley, M.P. (1982). "Analysis of the effect of changing discharge on channel morphology and instream uses in a braided river, Ohau River, New Zealand." Water Resources Research, Vol. 18, No, 4, pp. 800-812. https://doi.org/10.1029/WR018i004p00800
  25. Nikora, V., and Roy, A.G. (2012). "Secondary flows in rivers: Theoretical framework, recent advances, and current challenges." Gravel-bed rivers: Processes, tools, environments, Edited by Church, M., Brion, P.M., and Roy, A.G., John Wiley & Sons, Tadoussac, Quebec, pp. 6-10. doi: 10.1002/9781119952497.
  26. Park, H. (1998). "The plan of water control in Nam-river." Environment Problems Research Institute Chinji National University, Vol. 1, pp. 66-82.
  27. Parsons, D.R., Best, J.L., Lane, S.N., Orfeo, O., Hardy, R.J., and Kostaschuk, R. (2007). "Form roughness and the absence of secondary flow in a large confluence-diffluence, Rio Parana, Argentina." Earth Surface Processes and Landforms, Vol. 32, No. 1, pp. 155-162. https://doi.org/10.1002/esp.1457
  28. Parsons, D.R., Jackson, P.R., Czuba, J.A., Engel, F.L., Rhoads, B.L., Oberg, K.A., Best, J.L., Mueller, D.S., Johnson, K.K., and Riley, J.D. (2013). "Velocity mapping toolbox (VMT): A processing and visualization suite for moving-vessel ADCP measurements." Earth Surface Processes and Landforms, Vol. 38, No. 11, pp. 1244-1260. https://doi.org/10.1002/esp.3367
  29. Pouchoulin, S., Le Coz, J., Mignot, E., Gond, L., and Riviere, N. (2020). "Predicting transverse mixing efficiency downstream of a river confluence." Water Resources Research, Vol. 56, No. 10, e2019WR026367.
  30. Rhoads, B.L., and Johnson, K.K. (2018). "Three-dimensional flow structure, morphodynamics, suspended sediment, and thermal mixing at an asymmetrical river confluence of a straight tributary and curving main channel." Geomorphology, Vol. 323, pp. 51-69. https://doi.org/10.1016/j.geomorph.2018.09.009
  31. Rhoads, B.L., and Kenworthy, S.T. (1995). "Flow structure at an asymmetrical stream confluence." Geomorphology, Vol. 11, pp. 273-293. https://doi.org/10.1016/0169-555X(94)00069-4
  32. Rhoads, B.L., and Kenworthy, S.T. (1999). "On secondary circulation, helical motion and Rozovskii-based analysis of time-averaged two-dimensional velocity fields at confluences." Earth Surface Processes and Landforms, Vol. 24, No. 4, pp. 369-375. https://doi.org/10.1002/(SICI)1096-9837(199904)24:4<369::AID-ESP983>3.0.CO;2-F
  33. Rhoads, B.L., and Sukhodolov, A.N. (2001). "Field investigation of three-dimensional flow structure at stream confluences: 1. Thermal mixing and time-averaged velocities." Water Resources Research, Vo. 37, pp. 2393-2410. https://doi.org/10.1029/2001WR000316
  34. Riley, J.D., and Rhoads, B.L. (2012). "Flow structure and channel morphology at a natural confluent meander bend." Geomorphology, Vol. 163, pp. 84-98. https://doi.org/10.1016/j.geomorph.2011.06.011
  35. Riley, J.D., Rhoads, B.L., Parsons, D.R., and Johnson, K.K. (2015). "Influence of junction angle on three-dimensionalflow structure and bed morphology at confluentmeander bends during different hydrologicalconditions." Earth Surface Processes and Landforms, Vol. 40, No. 2, pp. 252-271. https://doi.org/10.1002/esp.3624
  36. Rozovskii, I.L. (1957). Flow of water in bends of open channels. Academy of Sciences of the Ukrainian SSR, Kiev, Ukraine (Translated from Russian by the Israel Program for Scientific Translations, Jerusalem, 1961), pp. 11-222.
  37. Szupiany, R.N., Amsler, M.L., Best, J.L., and Parsons, D.R. (2007). "Comparison of fixed- and moving-vessel flow measurements with an aDp in a large river." Journal of Hydraulic Engineering, Vol. 133, No. 12, pp. 1299-1309. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:12(1299)
  38. Szupiany, R.N., Amsler, M.L., Hernandez, J., Parsons, D.R., Best, J.L., Fornari, E., and Trento, A. (2012). "Flow fields, bed shear stresses, and suspended bed sediment dynamics in bifurcations of a large river." Water Resources Research, Vol. 48, No. 11, W11515, doi: 10.1029/2011WR011677.
  39. Szupiany, R.N., Amsler, M.L., Parsons, D.R., and Best, J.L. (2009). "Morphology, flow structure, and suspended bed sediment transport at two large braid-bar confluences." Water Resources Research, Vol. 45, No. 5, W05415, doi: 10.1029/2008WR007428.