DOI QR코드

DOI QR Code

Comparison of tolerance of red seabream, Pagrus major exposed to hypoxia with body size

저산소에 노출된 참돔(Pagrus major)의 개체 크기에 따른 내성 비교

  • Ji-Do Han (South Sea Fisheries Research Institute, National Institute Fisheries Science) ;
  • Heung-Yun Kim (Department of Aqualife Medicine, Chonnam National University)
  • 한지도 (국립수산과학원 남해수산연구소) ;
  • 김흥윤 (전남대학교 수산생명의학과)
  • Received : 2023.12.13
  • Accepted : 2023.12.18
  • Published : 2023.12.31

Abstract

Experiments were performed to investigate hypoxia tolerance with body size of red seabream (Pagrus major) at 24℃. The rate of oxygen consumption was measured at an interval of 10 min using automated intermittent-flow respirometry. The weight-specific standard metabolic rate (SMR, mg O2 kg-1hr-1) and critical oxygen saturation (Scrit, % air saturation) of the fish were measured under normoxic condition and progressive hypoxia with 0.6-786 g of fish weight (W), respectively. SMR typically decreased with increasing body weight based on SMR=351.59·W-0.195 (r2=0.934). Scrit was higher in larger fish than those of smaller fish in the range of 17.3-24.4%. The result of this study suggests that the smaller seabream can withstand in hypoxic waters better than the larger ones.

본 연구는 수온 24℃에서 체중 0.6-786 g 범위의 참돔 52개체의 SMR을 측정한 후 점진적인 저산소 조건에 노출시켜서 Scrit를 측정하여 개체 크기에 따른 저산소 내성을 평가할 목적으로 실시하였다. SMR (mg O2 kg-1hr-1)은 SMR=351.59·W-0.195 (r2=0.934, p<0.001)의 관계식으로 표시할 수 있었고, 체중(W) 증가에 따라 감소하는 경향을 보여주었다. 참돔의 체중과 Scrit 사이에는 Scrit (%)=2.316·logW+17.805 (r2=0.682, p<0.001)의 회귀직선식으로 나타낼 수 있었고, 체중 0.6-786 g인 개체의 Scrit는 17.3-24.4% 범위에서 개체 크기가 클수록 증가하여 작은 개체가 저산소 내성이 높은 것으로 나타났다.

Keywords

References

  1. Barnett, T.P., Pierce, D.W., AchutaRao, K.M., Glecker, P.J., Santer, B.D., Gregory, J.M. and Washington, W.M. (2005). Penetration of human-induced warming into the world's oceans. Science, 309: 284-287. https://doi.org/10.1126/science.1112418
  2. Bograd, S.J., Castro, C.G., Lorenzo, E.D., Palacios, D. M., Bailey, H., Gilly, W., and Chavez, F.P. (2008). Oxygen declines and the shoaling of the hypoxic boundary in the California Current. Geophy. Res. Lett., 35: L12607. https://doi.org/10.1029/2008GL034185
  3. Breitburg, D., Levin, L.A, Oschlies, A., Gregoire, M., ...... Zhang, J. (2018). Declining oxygen in the global ocean and coastal waters. Science, 359: eaam7240. https://doi.org/10.1126/science.aam7240
  4. Burleson, M.L., Wilhelm, D.R. and Smatresk, N.J. (2001). The influence of fish size on the avoidance of hypoxia and oxygen selection by largemouth bass. J. Fish Biol., 59: 1336-1349. https://doi.org/10.1006/jfbi.2001.1745
  5. Chabot, D., Steffensen, J.F. and Farrell, A.P. (2016). The determination of standard metabolic rate in fishes. J. Fish Biol., 88: 81-121. https://doi.org/10.1111/jfb.12845
  6. Claireaux, G. and Chabot, D. (2016). Responses by fishes to environmental hypoxia: Integration through Fry's concept of aerobic metabolic scope. J. Fish Biol., 88: 232-251. https://doi.org/10.1111/jfb.12833
  7. Claireaux, G. and Lagardere, J.P. (1999). Influence of temperature, oxygen and salinity on the metabolism of the European sea bass. J. Sea Res. 42: 157-168. https://doi.org/10.1016/S1385-1101(99)00019-2
  8. Claireaux, G., Theron, M., Prineau, M., Dussauze, M., Xavier-Merlin, F. and Le Floch, S. (2013). Effects of oil exposure and dispersant use upon environmental adaptation performance and fitness in the European sea bass, Dicentrarchus labrax. Aquatic Toxicology 130-131: 160-170. http://doi.org/10.1016/j.aquatox.2013.01.004
  9. Claireaux, G., Webber, D.M., Lagardere, J.P. and Kerr, S.R. (2000). Influence of water temperature and oxygen on the aerobic metabolic scope of Atlantic cod (Gadus morhua). J. Sea Res., 44: 257-265. https://doi.org/10.1016/S1385-1101(00)00053-8
  10. Clarke, A. and Johnston, N.M. (1999). Scaling of metabolic rate with body mass and temperature in teleost fish. J. Anim Ecol., 68: 893-905. https://doi.org /10.1046/j.1365-2656.1999.00337.x
  11. Cutts, C.J., Metcalfe, N.B. and Taylor, A.C. (2002). Juvenile Atlantic salmon (Salmo salar) with relatively high standard metabolic rates have small metabolic scopes. Functional Ecology, 16: 73-78. https://doi.org/10.1046/j.0269-8463.2001.00603.x
  12. Diaz, R.J. (2001). Overview of Hypoxia around the World. J. Environ. Qual., 30: 275-281. https://doi.org/10.2134/jeq2001.302275x
  13. Dupont-Prinet, A., Vagner, M., Chabot, D. and Audet, C. (2013). Impact of hypoxia on the metabolism of Greenland halibut (Reinhardtius hippoglossoides). Can. J. Fish. Aquat. Sci., 70: 461-469. https://doi.org/10.1139/cjfas-2012-0327
  14. Eby, L.A. and Crowder, L.B. (2002). Hypoxia-based habitat compression in the Neuse River Estuary: context-dependent shifts in behavioral avoidance thresholds. Can. J. Fish. Aquat. Sci., 59: 952-965. https://doi.org/10.1139/f02-067
  15. Elshout, P.M.F., Pires, L.M.D., Leuven, R.S.E.W., Bonga, S.E.W and Hendriks, A.J. (2013). Low oxygen tolerance of different life stages of temperate freshwater fish species. J. Fish Biol., 83: 190-206. https://doi.org/10.1111/jfb.12167
  16. Ern, R. and Esbaugh, A.J. (2016). Hyperventilation and blood acid-base balance in hypercapnia exposed red drum (Sciaenops ocellatus). Journal of Comparative Physiology B 186, 447-460. https://doi.org/10.1007/s00360-016-0971-7
  17. Farrell, A.P. and Richards, J.G. (2009). Defining hypoxia: an integrative synthesis of the responses of fish to hypoxia. In Fish Physiology: Hypoxia, Vol. 27, pp. 487-503, Richards, J.G., Farrell, A.P. and Brauner, C.J., Academic Press, San Diego, CA. https://doi.org/10.1016/S1546-5098(08)00011-3
  18. Fry, F.E.J. (1971). The effect of environmental factors on the physiology of fish. In Fish physiology, Vol. 6, pp. 1-98, Hoar, W.S. and Randall, D.J., Academic Press, New York. https://doi.org/10.1016/S1546-5098(08)60146-6
  19. Gallo, N.D. and Levin, L.A. (2016). Fish ecology and evolution in the world's oxygen minimum zones and implications of ocean deoxygenation. Adv. Mar. Biol., 74: 117-198. https://doi.org/10.1016/bs.amb.2016.04.001
  20. Gilly, W.F., Beman, J.M., Litvin, S.Y. and Robison, B.H. (2013). Oceanographic and biological effects of shoaling of the oxygen minimum zone. Annu. Rev. Mar. Sci., 5: 393-420. https://doi.org/10.1146/annurev-marine-120710-100849
  21. Han, J.D. and Kim, H.Y. (2016). Changes in respiratory metabolism and blood chemistry of olive flounder Paralichthys olivaceus exposed to hypoxia. Korean J. Fish. Aquat. Sci., 49: 45-52. https://doi.org/10.5657/KFAS.2016.0045
  22. Heath M.R., Neat, F.C., Pinnegar, J.K., Reid, D.G., Sims, D.W. and Wright, P.J. (2012). Review of climate change impacts on marine fish and shellfish around the UK and Ireland. Aquat. Conserv.: Mar. Freshw. Ecosyst. 22: 337-367. https://doi.org/10.1002/aqc.2244
  23. Jung, J.H., Kim, H.N., Chae, Y.S. and Shim, W.J. (2014). Biochemical responses of juvenile rockfish (Sebastes schlegeli) to low levels of dissolved oxygen in Gamak Bay. Ocean. Sci. J., 49: 241-247. https://doi.org/10.1007/s12601-014-0024-7
  24. Keeling, R.F. and Garcia, H.E. (2002). The change in oceanic O2 inventory associated with recent global warming. PNAS, 99: 7848-7853. https://doi.org/10.1073/pnas. 122154899
  25. Keeling, R.F., Kortzinger, A. and Gruber, N. (2010). Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci., 2: 199-229. https://doi.org/10.1146/annurev.marine.010908.163855
  26. Kim, H.Y. (2021). Changes in metabolic rate and hematological parameters of black rockfish (Sebastes schlegeli) in relation to temperature and hypoxia. J. Fish Pathol., 34: 213~224. https://doi.org/10.7847/jfp.2021.34.2.213
  27. Kim, Y.S., Han, K.H., Kang, C.B. and Kim, J.B. (2004). Commercial fishes of the coastal and offshore waters in Korea. p. 175. 2nd ed., Hangeul, Pusan.
  28. Kir, M., Sunar, M.C. and Altindag, B.C. (2017). Thermal tolerance and preferred temperature range of juvenile meagre acclimated to four temperatures. J. Therm. Biol., 65: 125-129. https://doi.org/10.1016/j.jtherbio.2017.02.018
  29. Kisia, S.M. and Hughes, G.M. (1992). Estimation of oxygen-diffusing capacity in the gills of different sizes of a tilapia, Oreochromis niloticus. J. Zool., 227: 405-415. https://doi.org/10.1111/j.1469-7998.1992.tb04403.x
  30. Kraskura, K., Hardison, E.A. and Eliason, E.J. (2023). Body size and temperature affect metabolic and cardiac thermal tolerance in fish. Sci. Rep., 13: 17900. https://doi.org /10.1038/s41598-023-44574-w
  31. La Pointe, D., Vogelbein, W.K., Fabrizio, M.C., Gauthier, D.T. and Brill, R.W. (2014). Temperature, hypoxia, and mycobacteriosis: effects on adult striped bass Morone saxatilis metabolic performance. Dis. Aquat. Org., 108: 113-127. https://doi.org/10.3354/dao02693
  32. Lucas, J., Schouman, A., Lyphout, L., Cousin, S. and Lefrancois, C. (2014). Allometric relationship between body mass and aerobic metabolism in zebrafish Danio rerio. J. Fish Biol., 84: 1171-1178. https://doi.org/10.1111/jfb.12306
  33. Mandic, M., Todgham, A.E. and Richards, J.G. (2009). Mechanisms and evolution of hypoxia tolerance in fish. Proc. R. Soc. B, 276: 735-744. https://doi.org/10.1098/rspb.2008.1235
  34. Mattiasen, E.G., Kashef, N.S., Stafford, D.M., Logan, C.A., Sogard, S.M., Bjorkstedt, E.P. and Hamilton, S.L. (2020). Effects of hypoxia on the behavior and physiology of kelp forest fishes. Glob. Change Biol., 26: 3498-3511. https://doi.org/10.1111/gcb.15076
  35. McBryan, T.L., Anttila, K., Healy, T.M. and Schulte, P.M. (2013). Responses to temperature and hypoxia as interacting stressors in fish: Implications for adaptation to environmental change. Integr. Comp. Biol., 53: 648-659. https://doi.org/10.1093/icb/ict066
  36. Metcalfe, N.B., Van Leeuwen, T.E. and Killen, S.S. (2016). Does individual variation in metabolic phenotype predict fish behaviour and performance? J. Fish Biol., 88: 298-321. https://doi.org/10.1111/jfb.12699
  37. Millidine, K.J., Armstrong, J.D. and Metcalfe, N.B. (2009). Juvenile salmon with high standard metabolic rates have higher energy costs but can process meals faster. Proc. R. Soc. B, 276: 2103-2108. https://doi.org/10.1098/rspb.2009.0080
  38. Nelson, J.A. and Lipkey, G.K (2015). Hypoxia tolerance variance between swimming and resting striped bass Morone saxatilis. J. Fish Biol., 87: 510-518. https://doi.org/10.1111/jfb.12735
  39. Nilsson, G.E., Hobbs, J.P., Munday, P.L. and Ostlund-Nilsson, S. (2004). Coward or braveheart: extreme habitat fidelity through hypoxia tolerance in a coral-dwelling goby. J. Exp. Biol., 207: 33-39. https://doi.org/10.1242/jeb.00713
  40. Nilsson, G. E. & Ostlund-Nilsson, S. (2008). Does size matter for hypoxia tolerance in fish? Biol. Rev., 83: 173-189. https://doi.org/10.1111/j.1469-185X.2008.00038.x
  41. Pan, Y.K., Ern, R. and Esbaugh, A.J. (2016). Hypoxia tolerance decreases with body size in red drum Sciaenops ocellatus. J. Fish Biol., 89: 1488-1493. https://doi.org/10.1111/jfb.13035
  42. Perry, S.F., Jonz, M.G. and Gilmour, K.M. (2009). Oxygen sensing and the hypoxic ventilatory response. In Fish Physiology: Hypoxia, Vol. 27, pp. 193-253, Richards, J.G., Farrell, A.P. and Brauner, C.J., Academic Press, San Diego, CA. https://doi.org/10.1016/S1546-5098(08)00005-8
  43. Pihl, L., Baden, S.P. and Diaz, R.J. (1991). Effects of periodic hypoxia on distribution of demersal fish and crustaceans. Mar. Biol., 108: 349-360. https://doi.org/10.1007/BF01313644
  44. Rabalais, N.N., Diaz, R.J., Levin, L.A., Turner, R.E., Gilbert, D. and Zhang J. (2010). Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences, 7: 585-619. https://doi.org/10.5194/bg-7-585-2010
  45. Richards, J.G. (2011). Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia. J. Exp. Biol., 214: 191-199. https://doi.org/10.1242/jeb.047951
  46. Rosewarne, P.J., Wilson, J.M. and Svendsen, J.C. (2016). Measuring maximum and standard metabolic rates using intermittent-flow respirometry: a student laboratory investigation of aerobic metabolic scope and environmental hypoxia in aquatic breathers. J. Fish Biol., 88: 265-283. https://doi.org/10.1111/jfb.12795
  47. Snyder, S., Nadler, L.E., Bayley, J.S., Svendsen, M.B.S., Johansen, J.L., Domenici, P. and Steffensen, J.F. (2016). Effect of closed v. intermittent-flow respirometry on hypoxia tolerance in the shiner perch Cymatogaster aggregate. J. Fish Biol., 88: 252-264. https://doi.org/10.1111/jfb.12837
  48. Sloman, K.A., Wood, C.M., Scott, G.R., Wood, S., Kajimura, M., Johannsson, O.E., Almeida-Val, V. M.F. and Val, A.L. (2006). Tribute to R. G. Boutilier: The effect of size on the physiological and behavioural responses of oscar, Astronotus ocellatus, to hypoxia. J. Exp. Biol., 209: 1197- 1205. https://doi.org/10.1242/jeb.02090
  49. Stramma, L., Prince, E.D., Schmidtko, S., Luo, J., Hoolihan, J.P., Visbeck, M., Wallace, D.W.R., Brandt, P. and Kortzinger, A. (2012). Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nature Climate Change 2: 33-37. https://doi.org/10.1038/NCLIMATE1304
  50. Townhill, B.L., van der Molen, J., Metcalfe, J.D., Simpson, S.D., Farcas, A. and Pinnegar, J.K. (2017). Consequences of climate-induced low oxygen conditions for commercially important fish. Mar. Ecol. Prog. Ser., 580: 191-204. https://doi.org/10.3354/meps12291
  51. Tsuchida, S.: Experimental study on temperature preference of Japanese marine fish. Rep. Mar. Ecol. Res. Inst., 4:11-66, 2002.
  52. Walter, R.K., Woodson, C.B., Leary, P.R. and Monismith, S.G. (2014). Connecting wind-driven upwelling and offshore stratification to nearshore internal bores and oxygen availability. JGR Oceans, 119: 3517-3534. https://doi.org/10.1002/2014JC009998
  53. Wannamaker, C.M. and Rice, J.A. (2000). Effects of hypoxia on movements and behavior of selected estuarine organisms from the southeastern United States. J. Exp. Mar. Biol. Ecol., 249: 145-163. https://doi.org/10.1016/S0022-0981(00)00160-X
  54. Yoann, T., Jonathan, F., Denis, C., Arturo, A., Goncalo, M. and Laure, P. (2019). Effects of hypoxia on metabolic functions in marine organisms: observed patterns and modelling assumptions within the context of dynamic energy budget (DEB) theory. J. Sea Res., 143: 231-242. https://doi.org/10.1016/j.seares.2018.05.001
  55. Zhang, J., Gilbert, D., Gooday, A.J., Levin, L., Naqvi, S.W.A., Middelburg, J.J., --- Van der Plas, A.K. (2010). Natural and human-induced hypoxia and consequences for coastal areas: synthesis and future development. Biogeosciences 7: 1443-1467. https://doi.org/10.5194/bg-7-1443-2010