DOI QR코드

DOI QR Code

Effects of nitrite exposure on survival and physiology of white leg shrimp, Litopenaeus vannamei

아질산 노출이 흰다리새우, Litopenaeus vannamei의 생존율 및 독성 생리에 미치는 영향

  • Su Kyoung Kim (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Seok-Ryel Kim (Dept. of Smart Fisheries Resources Science, Kongju National University)
  • 김수경 (국립수산과학원 서해수산연구소) ;
  • 김석렬 (공주대학교 스마트수산자원학과)
  • Received : 2023.11.20
  • Accepted : 2023.12.05
  • Published : 2023.12.31

Abstract

Juveniles of the white leg shrimp Litopenaeus vannamei (Weight 0.18±0.08 g) were exposed to nitrite-N at 0, 25, 50, 100, 200 and 400 mg/L for 72 hours, and the lethal concentration, heamolymph and genes regulation were evaluated. The lethal concentration 50 (LC50) of L. vannamei exposed to nitrite-N was 141.2 mg/L at 25℃ and 33 psu. In Total protein, total cholesterol, and BUN in heamolymph temporarily increased after the start of the experiment and then stabilized, but glucose, an indicator of stress, decreased over time in the entire experimental group, and creatines, an indicator of tissue damage, decreased with nitrite concentration until the first 12 hours. The genes of immune-related showed that masquerade-like serine proteinase(Mas) increased at 50 and 400 ppm for 24 hours, and then gradually decreased depending on concentration. In the case of prophenoloxidase, it was highest at 400 ppm for 40 hours, and other genes(Ras-related nuclear protein, Masquerade-like serine proteinase, proPO-activating enzyme) showed a response for 48 hours and then gradually decreased. The results of this study indicate that exposure to nitrite can affect the survival and hematological physiology of L. vannamei.

Keywords

References

  1. Amparyup P. and Charoensapsri W., Two prophe-noloxidases are important for the survival of Vibrio har-veyi challenged shrimp Penaeus monodon. Dev. Comp. Immunol., 2009. 33:247-256. DOI: 10.1016/j.dci.2008.09.003.
  2. Amparyup P., Jitvaropas R., Pulssook N. and Tassanakajon A., Molecular cloning, characterization and ex-pression of a masquerade-like serine proteinase ho-mologue from black tiger shrimp Penaeus monodon. Fish Shellfish Immunol., 2007. 33:247-256. https://doi.org/10.1016/j.fsi.2006.07.004.
  3. Chen J.C. and Lei S.C., Toxicities of ammonia and nitrite to Penaeus monodon juveniles. J. World Aquac. Soc., 1990. 21, 300-306. doi.org/10.1016/0044-8486(90)90305-7.
  4. Chen J.C. and Lin C.Y., Lethal effects of ammonia and nitrite on Penaeus penicillatus juveniles at two salinity levels. Comp. Biochem. Physiol., 1991. 100C:466-482. https://doi.org/10.1016/0742-8413(91)90026-P.
  5. Chen J.C., Liu P.C. and Nan F.H., Lethal effect of nitrite to juvenile Metapenaeus ensis. J. Fish. Soc. Taiwan, 1990b. 17:109-115. doi.org/10.1111/j.1749-7345.1991.tb00716.x.
  6. Chen J.C., Ting Y.Y., Lin J.N. and Lin M.N., Lethal effects of ammonia and nitrite on Penaeus chinensis juveniles. Mar. Biol., 1990a. 107:427-431. https://link.springer.com/article/10.1007/BF01313424.
  7. Cheng C.H., Su Y.L., Ma H.L., Deng Y.Q., Feng J., Chen X.L. and Guo Z.X., Nitrite-induced oxidative stress, histopathology, and transcriptome changes in the mud crab(Scylla paramamosain). Isr. J. Aquac., 2019. 71:1626-1637. https://doi.org/10.46989/001c. 20956.
  8. Cheng S.Y. and Chen J.C., Effects of nitrite exposure on the hemolymph electrolyte, respiratory protein and free amino acid levels and water content of Penaeus japonicus. Aquatic Toxicology. 1998. 44: 129-139. https://doi.org/10.1016/S0166-445X(98)00064-2.
  9. Day S.B., Salie K. and Stander H.B., A growth comparison among three commercial tilapia species in a bi-ofloc system. Aquacult. Int., 2016. 24:1309-1322. https://doi.org/10.1007/s10499-016-9986-z.
  10. Francisco V.A. and Gloria Y.P., Beta glucan binding protein and its role in shrimp immune response. Aquaculture, 2000. 191:13-21. https://doi.org/10.1016/S0044-8486(00)00416-6.
  11. Gutierrez X.A., Kolarevic J., Takle H., Baeverfjord G., Ytteborg E. and Fyhn Terjesen B., Effects of chronic sub-lethal nitrite exposure at high water chloride concentration on Atlantic salmon(Salmo salar, Lin-naeus 1758) parr. Aquac. Res., 2019. 50:2687-2697. https://doi.org/10.1111/are.14226.
  12. Han F. and Zhang X., Characterization of a ras-related nuclear protein(Ran protein) up-regulated in shrimp antiviral immunity. Fish Shellfish Immunol., 2007. 23:937-944. https://doi.org/10.1016/j.fsi.2007.01.022.
  13. Han S.Y., Wang B.J., Liu M., Wang M.Q., Jiang K.Y., and Liu X.W., Adaptation of the white shrimp Litopenaeus vannamei to gradual changes to a lowpH environment. Ecotoxicol. Environ. Saf., 2018a. 149: 203-210. https://doi: 10.1016/j.ecoenv.2017.11.052
  14. Han S.Y., Wang M.Q., Liu M., Wang B.J., Jiang K.Y., and Wang L., Comparative sensitivity of the hep-atopancreas and midgut in the white shrimp Litope-naeus vannamei to oxidative stress under cyclic serious/medium hypoxia. Aquaculture 2018b. 490:44-52. doi: 10.1016/j.aquaculture.2018.02.021.
  15. Jang I.K., Pang Z., Yu J., Kim S.K., Seo H.C. and Cho Y.R., Selectively enhanced expression of proph-enoloxidase activating enzyme 1(PPAE1) at a bacteria clearance site in the white shrimp, Litopenaeus vannamei. BMC Immunol., 2011. 12:70. DOI: 10.1186/1471-2172-12-70.
  16. Jia R., Liu B.L., Han C., Huang B. and Lei J.L., The physiological performance and immune response of juvenile turbot(Scophthalmus maximus) to nitrite exposure. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2004, 138:3-10. https://doi.org/10.1016/j.cbpc.2016.01.002.
  17. Kim S.K., Pang Z., Seo H.C., Cho Y.R., Samocha T. and Jang I.K., Effect of bioflocs on growth and im-mune activity of Pacific white shrimp, Litopenaeus vannamei postlarvae. Aquacul. Res., 2014. 45:362-371. https://doi.org/10.1111/are.12319.
  18. Korean Statistical Information Service, http//www.kosis.kr. 2022
  19. Kwon T.H., Kim M.S., Choi H.W., Joo C.H., Cho M.Y. and Lee B.L., A masquerade-like serine proteinase homologue is necessary for phenoloxidase activity in the coleopteran insect, Holotrichia diomphaliala-rvae. Eur. J. Biochem., 2000. 267:6188-6196. doi:10.1046/j.1432-1327.2000.01695.x.
  20. Le Moullac G. and Haffner P., Environmental factors affecting immune responses in Crustacea. Aquaculture, 2000. 191:121-131. https://doi.org/10.1016/S0044-8486(00)00422-1.
  21. Lee K.Y., Zhang R., Kim M.S., Park J.W., Park H.Y. and Kawabata S.I., A zymogen form of masquer-ade-like serine proteinase homologue is cleaved during pro-phenoloxidase activation by Ca2+ in coleopteran and Tenebrio molitor larvae. Eur. J. Biochem., 2002. 269:4375-4383. doi: 10.1046/j.1432-1033.2002.03155.x.
  22. Li E., Chen L., Zeng C., Yu N., Xiong Z., and Chen X., Comparison of digestive and antioxidant en-zymes activities, haemolymph oxyhemocyanin contents and hepatopancreas histology of white shrimp, Litopenaeus vannamei, at various salinities. Aqua-culture, 2008. 274:80-86. doi: 10.1016/j.aquaculture.2007.11.001.
  23. Li Z.S., Ma S., Shan H.W., Wang T. and Xiao W., Responses of hemocyanin and energy metabolism to acute nitrite stress in juveniles of the shrimp Litope-naeus vannamei. Ecotoxicol. Environ. Saf., 2019. 186: 109753. https://doi.org/10.1016/j.ecoenv.2019.109753.
  24. Lin Y.C. and Chen J.C., Acute toxicity of nitrite on Litopenaeus vannamei(Boone) juveniles at different salinity levels. Aquaculture, 2003. 224:193-201. doi: 10.1016/S0044-8486(03)00220-5.
  25. Livak, K.J. and Schmittgen, T.D. Analysis of relative gene expression data using real time quantitative PCR and the 2-ΔΔCT method. Methods, 2001. 25:402-408. https://doi.org/10.1006/meth.2001.1262.
  26. Moon C.R., Rho T.K., Kang D.J., Kahng S.H., Cho S.R., Kim E.S., Lee J.M., Park E.J. and Shin J.S. 2010 Inter-laboratory comparison study on nutrient analy-sis in seawater. J. Kor. Soci. Oceanogr. 2015. 21(1):63-70 https://doi.org/10.7850/jkso.2015.20.1.63.
  27. Sritunyalucksana K. and Soderhall K., The proPO and clotting system in crustaceans. Aquaculture, 2000. 191:53-69. DOI: 10.1016/S0044-8486(00)00411-7.
  28. Tseng I.T. and Chen J.C., The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under nitrite stress. Fish Shellfish Immunol., 2004. 17:325-333. https://doi.org/10.1016/j.fsi.2004.04.010.
  29. Valencia-Castaneda G., Frias-Espericueta M.G., Vane-gas-Perez R.C., Chavez-Sanchez M.C. and PaezOsuna F., Toxicity of ammonia, nitrite and nitrate to Litopenaeus vannamei juveniles in low-salinity water in single and ternary exposure experiments and their environmental implications. Environ. Toxi-col. Pharmacol., 2019. 70:103193. https://doi.org/10.1016/j.etap.2019.05.002.
  30. Wang J., Qu Y., Yan M., Li J., Jou J. and Fan L., Physiological responses of pacific white shrimp Litopenaeus vannamei to temperature fluctuation in low-salinity water. Front. Physiol., 2019. 13:01025.doi.org/10.3389/fphys.2019.01025.
  31. Wang R., Lee S.Y., Cerenius L. and Soderhall K., Pro-perties of the prophenoloxidase activating enzyme of the freshwater crayfish, Pacifastacus leniusculus. Eur. J. Biochem., 2001. 268:895-902. DOI: 10.1046/j.1432-1327.2001.01945.x
  32. Yu Y.B., Choi J.H., Lee J.H., Jo A.H., Lee K.M. and Kim J.H., Biofloc technology in fish aquaculture: A Review. Antioxidants, 2023. 12:398. https://doi.org/10.3390/antiox12020398.
  33. Zhang H., Fang D., Mei J., Xie J. and Qiu W., A prelimi-nary study on the effects of nitrite exposure on hem-atological parameters, oxidative stress, and immunerelated responses in pearl gentian grouper. Fishes, 2022. 7(5):235. https://doi.org/10.3390/fishes7050235.
  34. Zhang Y., Liang X.F., He S. and Li L., Effects of long-term low-concentration nitrite exposure and detoxification on growth performance, antioxidant ca-pacities, and immune responses in Chinese perch (Siniperca chuatsi). Aquaculture, 2021. 533:736123. https://doi.org/10.1016/j.aquaculture.2020.736123.