DOI QR코드

DOI QR Code

Comparison Analysis on Characteristics and Components of Various Waste Plastic Pyrolysis Oils by Vacuum Distillation Method

감압증류를 통해 분획된 폐플라스틱 열분해유의 특성평가와 구성성분 비교분석 연구

  • Hwayeon Jeon (Research Institute of Future Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Cheol Hwan Jeon (Research Institute of Future Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Sung Joon Park (R&D Center, Lotte Chemical) ;
  • Jae Woo Lee (Department of Environmental Engineering, Korea University) ;
  • Jae-kon Kim (Research Institute of Future Technology, Korea Petroleum Quality & Distribution Authority)
  • 전화연 (한국석유관리원 미래기술연구소) ;
  • 전철환 (한국석유관리원 미래기술연구소) ;
  • 박성준 (롯데케미칼 롯데중앙연구소) ;
  • 이재우 (고려대학교 환경시스템공학과) ;
  • 김재곤 (한국석유관리원 미래기술연구소)
  • Received : 2023.11.06
  • Accepted : 2023.12.01
  • Published : 2023.12.31

Abstract

Globally, the amount of waste plastics has been occurring to environmental problems. As a result, it is necessary to research methods that utilize waste plastic pyrolysis oil (WPPO) produced by pyrolysis. One such method being studied is utilizing WPPO as a naphtha feedstock. In this study, five types of WPPO were analyzed to determine whether they can be used as raw materials for naphtha. Because of their wide boiling point range, the WPPOs were fractionated into light and heavy fractions through vacuum distillation, and the separation and purification techniques were analyzed using GC-VUV to determine the content of paraffin, olefin, and other compounds. All WPPOs showed high olefin content regardless of the source and fraction. Aromatic and paraffin content varied depending on the source, and oxygen and other compounds also varied significantly by source and fraction. In addition, the light fraction showed a carbon distribution similar to that of naphtha, whereas the heavy fraction showed a carbon distribution of C11 ~ C14. In conclusion, additional processes and raw material selection are required to utilize waste plastic pyrolysis oil as a raw material for naphtha.

전 세계적으로 폐플라스틱 발생에 따른 환경적 문제로 인해 이를 처리하기 위한 다양한 연구가 진행되고 있다. 이 중 폐플라스틱을 열분해하여 연료 및 원료 등으로 재활용하는 방법이 보편적이다. 본 연구에서는 '폐플라스틱 열분해유(WPPO)의 나프타 원료로 활용'을 목적으로 총 5종의 폐플라스틱 열분해유(WPPO)의 물성분석을 통해 나프타 원료로 사용이 가능한지 살펴봄과 동시에 넓은 비점범위로 인해 분리정제 기술 중 하나인 감압증류를 통해 light fraction과 heavy fraction으로 분획 및 GC-VUV로 paraffin, 올레핀 함량 및 기타 화합물 등의 구성성분을 나타내었다. 그 결과, WPPO의 원료, 분획에 상관없이 높은 올레핀 함량이 나타났고 방향족 및 paraffin 함량 등은 원료에 따라 차이가 발생하였고 산소 및 기타 화합물도 원료 및 분획별 차이가 큰 것으로 나타났다. 또한, light fraction은 나프타와 유사한 탄소분포를 나타내지만, heavy fraction은 탄소분포가 C11 ~ C14로 나타났다. 결론적으로, 폐플라스틱 열분해유의 나프타원료 활용을 위해서 추가 공정이나 원료 선별 등이 필요할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 산업통상자원부(한국산업기술기획평가원) 소재부품기술개발사업-소재부품패키지형(200115401)에서 지원으로 수행되었다.

References

  1. Law, K. L., Starr, N., Siegler, T. R., Jambeck, J. R., Mallos, N. J., and Leonard, G. H., "The United States' Contribution of Plastic Waste to Land and Ocean," Sci. Adv., 6, 1-7 (2020).
  2. Sardon, H. and Dove, A. P., "Plastics Recycling with a Difference," Science, 360(6387), 380-381 (2018). https://doi.org/10.1126/science.aat4997
  3. Kaul, A., "Worldwide Plastics Production Falls in 2020 due to COVID-19: Report," Republicworld.com. (2021).
  4. Geyer, R., "Production, Use, and Fate of Synthetic Polymers," Plastic Waste Recycl., 13-32 (2020).
  5. Yee, M. S.-L., Hii, L.-W., Looi, C. K., Lim, W.-M., Wong, S.-F., Kok, Y.-Y., Tan, B.-K., Wong, C.-Y., and Leong, C.-O., "Impact of Microplastics and Nanoplastics on Human Health," Nanomaterials-Basel., 11(2), 496 (2020).
  6. Hu, Z., Zhou, T., Tian, H., Feng, L., Yao, C., Yin, Y., and Chen, D., "Effects of Pyrolysis Parameters on the Distribution of Pyrolysis Products of Miscanthus," Prog. React. Kinet. Mech., 46, 1-13 (2021).
  7. Le Courtois, A., "Municipal Solid Waste: Turning a Problem into Resource," Private Sector & Development, 15, 1-28 (2012).
  8. OECD : Global Plastic Outlook, https://www.oecd-ilibrary.org/environment/global-plastics-outlook_de747aef-en (accessed July 21, 2023).
  9. Fan, S., Zhang, Y., Cui, L., Maqsood, T., and Nizetic, S., "Cleaner Production of Aviation Oil from Microwave-Assisted Pyrolysis of Plastic Wastes," J. Clean. Prod., 390, 136102 (2023).
  10. Kim, S. H., Baek, S. H., Lee, R., Park, S. J., and Sohn, J. M., "A Study on Catalytic Pyrolysis of Polypropylene with Mn/sand," Clean Technol., 29(4), 185-192 (2023).
  11. Rehan, M., Nizami, A. S., Shahzad, K., Ouda, O. K. M., Ismail, I. M. I., Almeelbi, T., Iqbal, T., and Demirbas, A., "Pyrolytic Liquid Fuel: a Source of Renewable Energy in Makkah," Energ. Source. Part A, 38, 2598e2603 (2016).
  12. Evode, N., Qamar, S. A., Bilal, M., Barcelo, D., and Iqbal, H. M. N., "Plastic Waste and its Management Strategies for Environmental Sustainability," Case Stud. Chem. Environ. Eng., 4, 100142 (2021).
  13. Casazza, A., Spennati, E., Converti, A., and Busca, G., "Study on the Thermal Decomposition of Plastic Residues," Chem. Eng. Trans., 74, 1141-1146 (2019).
  14. Ahmad, I., Khan M. I., Khan H, Ishaq, M., Tariq, R., and Gul, K., "Pyrolysis Study of Polypropylene and Polyethylene into Premium Oil Products," Int. J. Green Energy, 12, 63-71 (2014).
  15. Adrados, A., De Marco, I., Caballero, B., Lopez, A., Laresgoiti, M., and Torres, A., "Pyrolysis of Plastic Packaging Waste: a Comparison of Plastic Residuals from Material Recovery Facilities with Simulated Plastic Waste," Waste Manage., 32, 826-832 (2012). https://doi.org/10.1016/j.wasman.2011.06.016
  16. Shah, J. and Jan, M. R., "Thermo-Catalytic Pyrolysis of Polystyrene in the Presence of Zinc Bulk Catalysts," J. Taiwan Inst. Chem. Eng., 45, 2494-500 (2014).
  17. Cui, Y., Zhang, Y., Cui, L., Xiong, Q., and Mostafa, E., "Microwave-Assisted Fluidized Bed Reactor Pyrolysis of Polypropylene Plastic for Pyrolysis Gas Production Towards a Sustainable Development," Appl. Energ., 342, 121099 (2023).
  18. Shah, H. H., Amin, M., Iqbal, A., Nadeem, I., Kalin, M., Soomar, A. M., and Galal, A. M., "A Review on Gasification and Pyrolysis of Waste Plastics," Front. Chem., 10, 960894 (2023).
  19. Barbarias, I., Lopez, G., Artetxe, M., Arregi, A., Bilbao, J., and Olazar, M., "Valorisation of Different Waste Plastics by Pyrolysis and in-Line Catalytic Steam Reforming for Hydrogen Production," Energy Convers. Manage., 156, 575-584 (2018). https://doi.org/10.1016/j.enconman.2017.11.048
  20. Park, H. C., Lee, B. K., Kim, H. S., and Choi, H. S., "Fast Pyrolysis Characteristics of Jatropha Curcas L. Seed Cake with Respect to Cone Angle of Spouted Bed Reactor," Clean Technol., 25(2), 161-167 (2019).
  21. Glaser, B., Guenther, M., Maennicke, H., and Bromm, T., "Microwave-Assisted Combustion to Produce Benzene Polycarboxylic Acids as Molecular Markers for Biochar Identification and Quantification," Biochar, 3, 407-418 (2021). https://doi.org/10.1007/s42773-021-00124-z
  22. Zevenhoven, R., Karlsson, M., Hupa, M., and Frankenhaeuser, M., "Combustion and Hasification Properties of Plastics Particles," J. Air Waste Manage. Assoc., 47, 861-870 (1997). https://doi.org/10.1080/10473289.1997.10464461
  23. Vollmer, I., Jenks, M. J. F., Roelands, M. C. P., White, R. J., Harmelen, T., and Wild, P., "Beyond Mechanical Recycling: Giving New Life to Plastic Waste," Angew. Chem. Int. Ed., 59(36), 15402-15423 (2020). https://doi.org/10.1002/anie.201915651
  24. Ding, K., Liu, S., Huang, Y., Liu, S., Zhou, N., Peng, P., Wang, Y., Chen, P., and Ruan, R., "Catalytic Microwave-assisted Pyrolysis of Plastic Waste over NiO and HY for Gasoline-Range Hydrocarbons Production," Energy Convers. Manage., 196, 1316-1325 (2019). https://doi.org/10.1016/j.enconman.2019.07.001
  25. Dai, L., Zhou, N., Lv, Y., Cobb, K., Cheng, Y., Wang, Y., and Ruan, R., "Pyrolysis-Catalysis for Waste Polyolefin Conversion into Low Aromatic Naphtha," Energy Convers. Manage., 245, 114578 (2021).
  26. Fan, L., Zhang, Y., Liu, S., Zhou, N., Chen, P., and Liu, Y., "Ex-Situ Catalytic Upgrading of Vapors from Microwave-Assisted Pyrolysis of Low-Density Polyethylene with MgO," Energy Convers. Manage., 149, 432-441 (2017). https://doi.org/10.1016/j.enconman.2017.07.039
  27. Korea Ministry of Government Legislation : Wastes control act, https://www.law.go.kr (accessed July 30, 2023).
  28. Korea Ministry of Government Legislation : Enforcement decree of the wastes control act, https://www.law.go.kr (accessed July 30, 2023).
  29. Yui, S., "Producing Quality Synthetic Crude Oil from Canadian Oil Sands Bitumen," Jpn. Petrol. Inst., 51(1), 1-13 (2008). https://doi.org/10.1627/jpi.51.1
  30. Roh, S. A., Yun, J. H., Keel, S. I., Lee, J. K., and Kim, H. S., "Pyrolysis Characteristics of Oil Shale," Clean Technol., 24(4), 365-370 (2018).
  31. Khan, M. Z. H., Sultana, M., Al-Mamun, M. R., and Hasan, M. R., "Pyrolytic Waste Plastic Oil and its Diesel Blend: Fuel Characterization," J. Environ. Pub. Health, 2016 (2016).
  32. Palos, R., Gutierrez, A., Fernandez, M. L., Azkoiti, M. J., Bilbao, J., and Arandes, J. M., "Taking Advantage of the Excess of Thermal Naphthas to Enhance the Quality of FCC Unit Products," J. Anal. Appl. Pyrol., 152, 104943 (2020).
  33. Ristic, N. D., Djokic, M. R., Delbeke, E., Gonzalez-Quiroga, A., Stevens, C. V., Van Geem, K. M., and Marin, G. B., "Compositional Characterization of Pyrolysis Fuel Oil from Naphtha and Cacuum Gas Oil," Energ. Fuel., 32(2), 1276-1286 (2018). https://doi.org/10.1021/acs.energyfuels.7b03242
  34. Kusenberg, M., Zayoud, A., Roosen, M., Thi, H. D., Abbas-Abadi, M. S., Eschenbacher, A., and Van Geem, K. M., "A Comprehensive Experimental Investigation of Plastic Waste Pyrolysis Oil Quality and its Dependence on the Plastic Waste Composition," Fuel Process. Technol., 227, 107090 (2022).
  35. Lee, K. H., "Effects of the Types of Zeolites on Catalytic Upgrading of Pyrolysis Wax Oil," J. Anal. Appl. Pyrol., 94, 209-214 (2012). https://doi.org/10.1016/j.jaap.2011.12.015
  36. Wang, S., Lee, D., Kim, H., Hwang, B. W., Nam, H., and Ryu, H. J., "Separation of MSW Pyrolysis Fuel Using 20 kg Scale Vacuum Distillation System and its Potential Application as Petro-Chemical Substitute," J. Environ.l Chem. Eng., 10(5), 108416 (2022).
  37. Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., Ismail, I. M. I., and Nizami, A. S., "Effect of Plastic Waste Types on Pyrolysis Liquid Oil," Int. Biodeter. Biodegr., 119, 239-252 (2017). https://doi.org/10.1016/j.ibiod.2016.09.017
  38. Dunkle, M. N., Pijcke, P., Winniford, W. L., Ruitenbeek, M., and Bellos, G., "Method Development and Evaluation of Pyrolysis Oils from Mixed Waste Plastic by GC-VUV," J. Chromatogr. A, 1637, 461837 (2021).
  39. Dunkle, M. N., Pijcke, P., Winniford, B., and Bellos, G., "Quantification of the Composition of Liquid Hydrocarbon Streams: Comparing the GC-VUV to DHA and GCxGC," J. Chromatogr. A, 1587 239-246 (2019). https://doi.org/10.1016/j.chroma.2018.12.026
  40. Walsh, P., Garbalena, M., and Schug, K. A., "Rapid Analysis and Time Interval Deconvolution for Comprehensive Fuel Compound Group Classification and Speciation Using Gas Chromatography-Vacuum Ultraviolet Spectroscopy," Anal. Chem., 88, 11130-11138 (2016). https://doi.org/10.1021/acs.analchem.6b03226
  41. Jeon, H., Kim, M.-Y., Lee, J. W., and Kim, J.-K., "Study on the Application of Environmental Assessment of Recycling of Domestic Waste Plastic Pyrolyis Oil for Naphtha Utilization," J. Korea S. Waste Manage., 39(5), 418 (2022).
  42. Kusenberg, M., Zayoud, A., Roosen, M., Thi, H. D., Abbas-Abadi, M. S., Eschenbacher, A., and Van Geem, K. M., "A Comprehensive Experimental Investigation of Plastic Waste Pyrolysis Oil Quality and its Dependence on the Plastic Waste Composition," Fuel Process. Technol., 227, 107090 (2022).