• Title/Summary/Keyword: 폐플라스틱 열분해유

Search Result 14, Processing Time 0.022 seconds

Recent Research Trend in the Catalytic Pyrolysis of Waste Plastics for the Production of Renewable Fuels and Chemicals (폐플라스틱 촉매 열분해를 통한 재생 연료 및 화학제품 생산 기술 연구동향)

  • Kim, Young Min;Lim, Se Jeong;Kim, Jichan;Jae, Jungho
    • Prospectives of Industrial Chemistry
    • /
    • v.24 no.2
    • /
    • pp.10-21
    • /
    • 2021
  • 최근 폐플라스틱의 사용량 증가와 미세플라스틱으로 인한 해양 오염 및 생태계 축적 등의 부정적인 영향으로 인해 플라스틱 업사이클링(upcycling) 및 리파이너리(refinery) 기술에 대한 관심이 증가하고 있다. 화학적 재활용 방법 중의 하나로, 폐플라스틱의 열분해를 통해서 재생 연료 및 화학물질을 생산하는 연구는 90년도에 활발히 진행된 바 있고, 최근의 환경오염에 대한 대응으로서 다시 많은 관심을 받고 있다. 폐플라스틱을 효율적으로 분해하기 위해서는 촉매를 사용하여 분해 속도를 제어해 주어야 하며, 사용된 촉매의 특성에 따라 최종 생성물의 성상이 크게 달라진다. 본 기고문에서는 폐플라스틱의 촉매 열분해를 통해 가솔린, 디젤유 및 항공유와 같은 수송용 연료, 발전용 연료 혹은 방향족 화학 물질을 생산하는 기술들의 최신 연구 동향을 다루고 향후 전망에 대해 기술하고자 한다. 아울러 최근 몇 년간 많은 연구가 있었던 바이오매스와 폐플라스틱의 혼합열분해를 통한 하이브리드 촉매 공동 열분해 기술에 대해서도 다루고자 한다.

Investigation of the Adsorption Properties of Activated Carbon Made by Chemical Activation of Mixed Waste Plastic Pyrolysis Residues (혼합 폐플라스틱 열분해 잔류물의 화학적 활성화를 통해 제조한 활성탄의 흡착 특성 조사)

  • Eun-Jin Moon;Yunsuk Kang;Byoungsun Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.391-399
    • /
    • 2023
  • Recently, low-temperature pyrolysis technology has been studied as a recycling method for waste plastic. Low-temperature pyrolysis technology for waste plastic produces pyrolysis oil that can be used as an energy resource, but solid residue remains. Waste plastic pyrolysis residues are mostly landfilled due to their limited use. In this study, it is investigated that mixed waste plastic pyrolysis residues could be recycled into activated carbon. It was confirmed that the fixed carbon content of the residue was 33.69 % from proximate Analysis. Chemical activation was used to manufacture activated carbon. KOH was used as an activator. To investigate the effect of the mixing ratio of KOH and residue, samples were mixed at ratios of 0.5, 1.0, and 2.0. The mixed sample was chemically activated at an activation temperature of 800 ℃ for 1 hour. As a result of analyzing the characteristics of activated carbon through BET, it was confirmed that the specific surface area increased as the mixing ratio of KOH increased.

Pyrolysis Technologies of Polymer wastes for the Production of Alternative Fuel Oil (대체연료유 제조를 위한 고분자 폐기물의 열분해 오일화 기술)

  • 정수현
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2000.04a
    • /
    • pp.19-144
    • /
    • 2000
  • 막대한 에너지원을 갖고 있는 고분자 폐기물은 열분해에 의하여 오일화가 가능하며 이 오일은 대체 연료유로서 사용이 가능하다. 그러나 이 연료유를 생산하기 위해서는 폐플라스틱 및 폐타이어의 경우는 공정을 서로 달리하여야 이용이 가능하며 생성유의 유질에서도 다소 차이가 있다. 올레핀계가 함유된 폐플라스틱을 열분해 오일화 하기 위해서는 분해 촉매를 사용하여야 하며 열분해유는 경유분과 d사한 성상을 갖고 있으며 폐타이어의 열분해유는 유황성분 및 BTX 분을 상당량 함유하고 있어서 경유분과는 다소 다른 성상을 갖고 있다. 또한 폐타이어 및 폐플라스틱의 열분해 기술이 사용화되기 위해서는 열분해시 발생하는 Coking 문제 극복 및 시스템에 대한 설계기술이 뒷받침되어야 한다.

  • PDF

Study of Hydrotreating and Hydrocracking Catalysts for Conversion of Waste Plastic Pyrolysis Oil to Naphtha (폐플라스틱 열분해유의 납사 전환을 위한 수첨처리 및 수첨분해 촉매연구)

  • Ki-Duk Kim;Eun Hee Kwon;Kwang Ho Kim;Suk Hyun Lim;Hai Hung Pham;Kang Seok Go;Sang Goo Jeon;Nam Sun Nho
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.126-130
    • /
    • 2023
  • In response to environmental demands, pyrolysis is one of the practical methods for obtaining reusable oils from waste plastics. However, the waste plastic pyrolysis oils (WPPO) are consumed as low-grade fuel oil due to their impurities. Thus, this study focused on the upgrading method to obtain naphtha catalytic cracking feedstocks from WPPO by the hydroprocessing, including hydrotreating and hydrocracking reaction. Especially, various transition metal sulfides supported catalysts were investigated as hydrotreating and hydrocracking catalysts. The catalytic performance was evaluated with a 250 ml-batch reactor at 370~400 ℃ and 6.0 MPa H2. Sulfur-, nitrogen-, and chlorine-compounds in WPPO were well eliminated with nickel-molybdenum/alumina catalysts. The NiMo/ZSM-5 catalyst has the highest naphtha yield.

Comparison Analysis on Characteristics and Components of Various Waste Plastic Pyrolysis Oils by Vacuum Distillation Method (감압증류를 통해 분획된 폐플라스틱 열분해유의 특성평가와 구성성분 비교분석 연구)

  • Hwayeon Jeon;Cheol Hwan Jeon;Sung Joon Park;Jae Woo Lee;Jae-kon Kim
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.262-271
    • /
    • 2023
  • Globally, the amount of waste plastics has been occurring to environmental problems. As a result, it is necessary to research methods that utilize waste plastic pyrolysis oil (WPPO) produced by pyrolysis. One such method being studied is utilizing WPPO as a naphtha feedstock. In this study, five types of WPPO were analyzed to determine whether they can be used as raw materials for naphtha. Because of their wide boiling point range, the WPPOs were fractionated into light and heavy fractions through vacuum distillation, and the separation and purification techniques were analyzed using GC-VUV to determine the content of paraffin, olefin, and other compounds. All WPPOs showed high olefin content regardless of the source and fraction. Aromatic and paraffin content varied depending on the source, and oxygen and other compounds also varied significantly by source and fraction. In addition, the light fraction showed a carbon distribution similar to that of naphtha, whereas the heavy fraction showed a carbon distribution of C11 ~ C14. In conclusion, additional processes and raw material selection are required to utilize waste plastic pyrolysis oil as a raw material for naphtha.

Assessment of Practical Use of Recycling Oil from the Pyrolysis of Mixed Waste Plastics (혼합폐플라스틱의 열분해를 통한 회수오일의 이용가능성 평가)

  • Phae Chae-Gun;Kim Young-shin;Jo Chang-Ho
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.159-166
    • /
    • 2005
  • In Korea, although the generation of waste plastic has been increasing, the rate of recycling is considerably low and moreover, there is no suitable method for the treatment of waste plastics. However, pyrolysis, which is appropriate for the treatment of highly polymerized compounds, such as plastics, has recently gained much interest. In this study, a property of the products from the pyrolysis of mixed waste plastics, with a possible practical use for the recycling oil produced, were assessed. First of all, in order to investigate the pyrolysis characteristic of waste plastics, TGA (Thermogravimetric analysis) and DCS (Differential Scanning Calorimetry) were performed on a number of different plastics, including PP, LDPE, HDPE, PET and PS, as well as others. According to the result, it appeared that PP was the most efficiently pyrolyzed by changing the temperature, followed by LDPE, HDPE, PET, PS and the other plastics, in that order. From the results, the optimum conditions f3r pyrolysis were set up, and the different waste plastics pyrolyzed. The recycling oil produced from the flammable gases generated during the pyrolysis was com-pared with fuel oil by an analysis using the petroleum quality inspection method on KS(Korea industrial Standard). The results of the analysis showed the recycling oil was of a similar standard to fuel oil, with the exception of the ignition point, with a quality somewhere between that of paraffin oil and diesel fuel. With respect to these results, the quality of the recycling oil produced by the pyrolysis of waste plastics was suf-ficient for use as fuel oil.

A Close Examination of Unstability and a Quality Improvement using Anhydrous $Na_2CO_3$ in Waste Plastic's Thermal Pyrolysis Oil (폐플라스틱 열분해 재생유의 불안정한 요인 규명과 무수탄산나트륨으로 품질 향상)

  • Seo, Young-Hwa;Ko, Kwang-Youn
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1371-1380
    • /
    • 2007
  • Study on the instability of waste plastic's thermal pyrolysis oil was carried out for the purpose of improving its quality. The reaction of pyrolysis oil with ozone changed double bonds into aldehydes and ketone, estimated that HDPE pyrolysis oil contained $\sim45$ wt% 1-alkene type olefins, and PP pyrolysis oil did $\sim73$ wt% olefins, which consisted of $\sim47$ wt% secondary and $\sim20$ wt% primary alkenes. The dark brown color and odor of pyrolysis oil were improved by eliminating double bonds, indicated that they were directly related to unsaturated hydrocarbons. Container test showed that metal can affected oil quality worse than the brown glass bottle. Antioxidant added into pyrolysis oil was consumed up to 90% within $2\sim3$ days and the wt. composition of unsaturated hydrocarbons in pyrolysis oil was not changed within 50 days, inferring that instability of pyrolysis oil due to unsaturated bonds can be stabilized by antioxidants. Adsorption test on silica gel, activated carbon and alumina to remove precipitates in oil produced a good result, but not enough to remove moisture. However, cheap anhydrous sodium carbonate showed the best removal efficiency of moisture as well as precipitates in oil. Therefore the pyrolysis oil quality improvement was accomplished by applying anhydrous $Na_2CO_3$ into the production plant.

New Technology Development for Production of Alternative Fuel Oil from Thermal Degradation of Plastic Waste (폐플라스틱의 열분해에 의한 대체 오일 생산의 신기술 개발)

  • Lee Kyong-Hwan;Roh Nam-Sun;Shin Dae-Hyun
    • Resources Recycling
    • /
    • v.15 no.1 s.69
    • /
    • pp.37-45
    • /
    • 2006
  • For treating a huge amount of plastic waste with the environment problem, pyrolysis of plastic waste into alternative fuel oil is one or important issue in recycling methods. This study was introduced over the trend or generation of plastic waste, in Korea pyrolysis technology in domestic and foreign countries, basic technology in pyrolysis process and new technology of pyrolysis developed in KIER (Korea Institute of Energy research). The characteristics of process developed in KIER are the continuous loading treatment or mixed plastic waste with an automatic control system, the minimization of wax production by circulation pyrolysis system in non-catalytic reactor, the reuse of gas produced and the oil recovery from sludge generated in pyrolysis plant, which have greatly the advantage economically and environmetally. The experiment result data in 300 ton/yr pilot plant showed about $81\;wt\%$ liquid yield for 3 days continuous reaction time, and also the boiling point distribution of light oil (LO) and heavy oil (HO) produced in distillation tower was a little higher than that of commercial gasoline and diesel, respectively.

New Technology Development for Production of Alternative Fuel Oil from Thermal Degradation of Plastic Waste (폐플라스틱의 열분해에 의한 대체 오일 생산의 신기술 개발)

  • Lee, Kyong-Hwan;Roh, Nam-Sun;Shin, Dae-Hyun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.34-46
    • /
    • 2005
  • For treating a huge amount of plastic waste with the environment problem, pyrolysis of plastic waste into alternative fuel oil is one of important issue in recycling methods. This study was introduced over the trend of generation of plastic waste, pyrolysis technology in domestic and foreign countries, basic technology in pyrolysis process and new technology of pyrolysis developed in KIER (Korea Institute of Energy Research). The characteristics of process developed in KIER are the continuous loading treatment of mixed plastic waste with an automatic control system, the minimization of wax production by circulation pyrolysis system in non-catalytic reactor, the reuse of gas produced and the oil recovery from sludge generated in pyrolysis plant, which have greatly the advantage economically and environmetally. The experiment result data in 300 ton/yr pilot plant showed about 81 wt% liquid yield for 3 days continuous reaction time, and also the boiling point distribution of light oil (LO) and heavy oil (HO) produced in distillation tower was a little higher than that of commercial gasoline and diesel, respectively.

  • PDF

Fire and Explosion Hazards and Safety Management Measures of Waste Plastic-to-Pyrolysis Oil Conversion Process (폐플라스틱 열분해 유화 공정의 화재·폭발 위험성 및 안전관리 방안)

  • Dong-Hyun Seo;Yi-Rac Choi;Jin-Ho Lim;Ou-Sup Han
    • New & Renewable Energy
    • /
    • v.19 no.3
    • /
    • pp.22-33
    • /
    • 2023
  • The number of fire and explosion accidents caused by pyrolysis oil and gas at waste plastic pyrolysis plants is increasing, but accident status and safety conditions have not been clearly identified. Therefore, the aim of the study was to identify the risks of the waste plastic pyrolysis process and suggest appropriate safety management measures. We collected information on 19 cases of fire and explosion accidents that occurred between 2010 and 2021 at 26 waste plastic pyrolysis plants using the Korea Occupational Safety and Health Agency (KOSHA) database and media reports. The mechanical, managerial, personnel-related, and environmental problems within a plant and problems related to government agencies and the design, manufacturing, and installation companies involved with pyrolysis equipment were analyzed using the 4Ms of Machines, Management, Man, and Media, as well as the System-Theoretic Accident Model and Processes (STAMP) methodology for seven accident cases with accident investigation reports. Study findings indicate the need for establishing legal and institutional support measures for waste plastic pyrolysis plants in order to prevent fire and explosion accidents in the pyrolysis process. In addition, ensuring safety from the design and manufacturing stages of facilities is essential, as are measures that ensure systematic operations after the installation of safety devices.