DOI QR코드

DOI QR Code

A Study on Vertiport Location and Corridor Selections using GIS Analysis in Busan Area

GIS 분석을 활용한 부산권 버티포트 위치 및 회랑 선정에 관한 연구

  • ChanHee Moon (Department of Aerospace Engineering, Pusan National University) ;
  • HaYoung Shi (Department of Aerospace Engineering, Pusan National University) ;
  • TaeWan Ku (Engineering Research Center for Innovative Technology on Advanced Forming, Pusan National University) ;
  • BeomSoo Kang (Department of Aerospace Engineering, Pusan National University)
  • 문찬희 (부산대학교 항공우주공학과) ;
  • 시하영 (부산대학교 항공우주공학과) ;
  • 구태완 (부산대학교 설계기반미래성형기술센터) ;
  • 강범수 (부산대학교 항공우주공학과)
  • Received : 2023.09.19
  • Accepted : 2023.11.27
  • Published : 2023.12.31

Abstract

As urban traffic congestion and environmental pollution are becoming significant issues in major cities, Urban Air Mobility (UAM) is gaining attention as an efficient solution. In this study, we conducted a geographic information system (GIS)-based spatial analysis and clustering algorithm considering the actual data of the terrain and infrastructure in the Busan area, through which we were able to select the location of vertiports and corridors (flight routes) for the UAM operation. Based on the Gimhae International Airport, which is expected to be the center of the UAM infrastructure system in the Busan region, we judged that three vertiport locations in the target area were suitable. Subsequently, we used the A* (A-star) algorithm considering Ground Risk to select a flight path that minimized both risk and distance. Through this, we confirmed a risk reduction effect of 80.168% compared to the minimum distance route.

도심 교통 체증과 환경오염이 중요한 대도시 문제로 부각되는 가운데, 최근에는 Urban Air Mobility(UAM)가 효율적인 대책으로 주목받고 있다. 본 연구에서는 부산 지역의 지형 및 인프라 등의 실제 데이터를 고려한 GIS 기반 공간 분석과 군집 알고리즘을 수행하였으며 이를 통해 UAM 운영을 위한 버티포트 위치와 경로를 선정할 수 있었다. 부산권 UAM 인프라 시스템의 중심으로 예상되는 김해국제공항을 기반으로, 목표 지역에서 세 개의 버티포트 위치가 적합하다 판단하였으며, 이후 지상 위험 평가(Ground Risk)를 고려한 A*(A-star) 알고리즘을 이용해 위험도와 거리를 최소화하는 비행경로를 선정하였고, 이를 통해 최소 거리 경로 대비 80.168%의 위험 감소 효과를 확인하였다.

Keywords

Acknowledgement

본 연구는 교육부 및 한국연구재단의 4단계 두뇌한국 21 사업(4단계 BK21 사업)으로 지원된 연구임 본 논문은 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음

References

  1. D. N. Fadhil, R. Rothfeld, B. Luftfahrt, R. Moeckel, "A GIS-based Analysis for Selecting Ground Infrastructure Locations for Urban Air Mobility," M.S. diss., Technical University of Munich, Munich, May. 2018.
  2. W. Kim, J. Park, J. W. Yu, J. Ko, "A Study on the Criterions Affecting UAM Vertiport Location Based on User-Oriented Perspectives," Journal of Korean Society of Transportation, vol. 41, pp. 212-225, Apr. 2023. https://doi.org/10.7470/jkst.2023.41.2.212
  3. J. Jeong, M. So, H. Y. Hwang, "Selection of Vertiports Using K-Means Algorithm and Noise Analyses for Urban Air Mobility (UAM) in the Seoul Metropolitan Area," Applied Sciences, vol. 11, no. 12, 2021.
  4. VIEW-T, Time Value Ratio, Vehicle Speed Ratio, (https://viewt.ktdb.go.kr), Dec, 2022.
  5. National Transportation DB, " Access method OD to the main means of access to Ulsan, Busan," (https://www.ktdb.go.kr/), Mar, 2023.
  6. Ministry of Land, Infrastructure, and Transport, "National Statistical Map," (http://map.ngii.go.kr/mi/dwldSvc/poiDwldSvcForm.do), Apr, 2023.
  7. QGIS 3.28.3 , (http://qgis.osgeo.org), Jan, 2023.
  8. Ministry of Land, Infrastructure, and Transport, "K-UAM Road Map," (http://www.molit.go.kr), Nov, 2020.
  9. V-world, "Open Platform for Spatial Information," (https://www.vworld.kr/v4po_main.do.), Apr, 2023.
  10. MATLAB R2022a, (https://kr.mathworks.com/), Jan, 2023.
  11. Calinski, T, J. Harabasz. "A dendrite method for cluster analysis", Communications in Statistics, vol. 3, no. 1, pp. 1-27, 1974. https://doi.org/10.1080/03610927408827101
  12. Davies, D. L., D. W. Bouldin. "A Cluster Separation Measure", IEEE Transactions on Pattern Analysis and Machine Intelligenc,. vol. PAMI-1, no. 2, pp. 224-227, 1979. https://doi.org/10.1109/TPAMI.1979.4766909
  13. Kaufman, L., and P. J. Rouseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, Hoboken, NJ: John Wiley & Sons, Inc., 1990.
  14. Rouseeuw, P. J. "Silhouettes: a graphical aid to the interpretation and validation of cluster analysis" Journal of Computational and Applied Mathematics, vol. 20, no. 1, pp. 53-65, Mar. 1990. https://doi.org/10.1016/0377-0427(87)90125-7
  15. Tibshirani, Robert, Guenther Walther, and Trevor Hastie, "Estimating the Number of Clusters in a Data Set Via the Gap Statistic" Journal of the Royal Statistical Society Series B: Statistical Methodology, no. 2, pp. 411-423, Jul. 2001.
  16. Shermeen Yousif, Wei Yan, "Application and evaluation of a K-Medoids-based shape clustering method for an articulated design space," Journal of Computational Design and Engineering, vol. 8, pp. 935-948, Jun. 2021. https://doi.org/10.1093/jcde/qwab024
  17. Y. Chen, X. Hu, W. Fan, L. Shen, Z. Zhang, X. Liu, et al., "Fast density peak clustering for large scale data based on kNN," Knowledge-Based Systems, vol. 187, 2020.
  18. Volocopter VoloCity, (https://transportup.com/volocopter-volocity/), Jun, 2023.
  19. Y. Kim, J. Bae, "Risk-Based UAV Corridor Capacity Analysis above a Populated Area" Drones, vol. 6, pp. 221, 2022.
  20. Y. Kim, "Ground Risk Model Development for Low Altitude UAV Traffic Management," Journal of Advanced Navigation Technology, vol. 24, pp. 471-478, Dec, 2020.
  21. P. E. Hart, N. J. Nilsson and B. Raphael, "A Formal Basis for the Heuristic Determination of Minimum Cost Paths," IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, July 1968 https://doi.org/10.1109/TSSC.1968.300136