Acknowledgement
This study was conducted with the support of the Research Cooperating Program for the National Research Foundation of Korea (Project No. 2019R1F1A 106325212), NRF, Republic of Korea.
References
- N. Green, B. Bjerkeng, K. Hylland, A. Ruus, and B. Rygg, Hazardous substances in the European marine environment: Trends in metals and persistent organic pollutants, European Environment Agency (2003).
- P. B. Tchounwou, C. G. Yedjou, A. K. Patlolla, and D. J. Sutton, Heavy metal toxicity and the environment, Molecular, Clinical and Environmental Toxicology, 133-164, Springer, Berlin, Germany (2012).
- M. Aryal and M. Liakopoulou-Kyriakides, Bioremoval of heavy metals by bacterial biomass, Environ. Monit. Assess., 187, 4173 (2015).
- J. H. Duffus, "Heavy metals" - A meaningless term?, Pure Appl. Chem., 74, 793-807 (2002). https://doi.org/10.1351/pac200274050793
- K. S. Kumar, H. U. Dahms, E. J. Won, J. S. Lee, and K. H. Shin, Microalgae-A promising tool for heavy metal remediation, Ecotoxicol. Environ. Saf., 113, 329-352 (2015). https://doi.org/10.1016/j.ecoenv.2014.12.019
- Ihsanullah, A. Abbas, A. M. Al-Amer, T. Laoui, M. J. Al-Marri, M. S. Nasser, M. Khraisheh, and M. A. Atieh, Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications, Sep. Purif. Technol., 157, 141-161 (2016). https://doi.org/10.1016/j.seppur.2015.11.039
- J. O. Duruibe, M. O. C. Ogwuegbu, and J. N. Egwurugwu, Heavy metal pollution and human biotoxic effects, Int. J. Phys. Sci., 2, 112-118 (2007).
- L. R. Herrera-Estrella, A. A. Guevara-Garcia, and J. Lo'pez-Bucio, Heavy metal adaptation, Encyclopedia of Life Science, 1-5, Macmillan Publishers, London, United Kingdom (1999).
- U. Forstner and G. T. Wittmann, Metal Pollution in the Aquatic Environment, 2nd ed., 7-11, Springer Science & Business Media, Berlin, Germany (2012).
- A. Gaur and A. Adholeya, Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils, Curr. Sci., 86, 528-534 (2004).
- L. Jarup, M. Berglund,, C. G. Elinder, G. Nordberg, and M. Vanter, Health effects of cadmium exposure-A review of the literature and a risk estimate, Scand. J. Work Environ. Health, 24, 1-51 (1998). https://doi.org/10.5271/sjweh.270
- C. E. Borba, R. Guirardello, E. A. Silva, M. T. Veit, and C. R. G. Tavares, Removal of nickel (II) ions from aqueous solution by biosorption in a fixed bed column: Experimental and theoretical breakthrough curves, Biochem. Eng. J., 30, 184-191 (2006). https://doi.org/10.1016/j.bej.2006.04.001
- N. Oyaro, J. Ogendi, E. N. Murago, and E. Gitonga, The contents of Pb, Cu, Zn and Cd in meat in nairobi, Kenya, J. Food Agric. Environ., 5, 119-121 (2007).
- S. S. Ahluwalia and D. Goyal, Microbial and plant derived biomass for removal of heavy metals from wastewater, Bioresour. Technol., 98, 2243-2257 (2007). https://doi.org/10.1016/j.biortech.2005.12.006
- A. M. Y. Chong, Y. S. Wong, and N. F. Y. Tam, Performance of different microalgal species in removing nickel and zinc from industrial wastewater, Chemosphere, 41, 251-257 (2007).
- A. Khosmanesh, F. Lawson, and I. G. Prince, Cadmium uptake by unicellular green microalgae, Chem. Eng. J. Biochem. Eng. J., 62, 81-88 (1996). https://doi.org/10.1016/0923-0467(95)03060-3
- M. Farhadian, C. Vachelard, D. Duchez, and C. Larroche, In situ bioremediation of monoaromatic pollutants in groundwater: A review, Bioresour. Technol., 99, 5296-5308 (2008). https://doi.org/10.1016/j.biortech.2007.10.025
- V. Radhika, S. Subramanian, and K. A. Natarajan, Bioremediation of zinc using Desulfotomaculum nigrificans: Bioprecipitation and characterization studies, Water Res., 40, 3628-3636 (2006). https://doi.org/10.1016/j.watres.2006.06.013
- A. Malik, Metal bioremediation through growing cells, Environ. Int., 30, 261-278 (2004). https://doi.org/10.1016/j.envint.2003.08.001
- G. M. Gadd, Bioremedial potential of microbial mechanisms of metal mobilization and immobilization, Curr. Opin. Biotechnol., 11, 271-279 (2000). https://doi.org/10.1016/S0958-1669(00)00095-1
- H. J. Bai, Z. M. Zhang, G. E. Yang, and B. Z. Li, Bioremediation of cadmium by growing Rhodobacter sphaeroides: Kinetic characteristic and mechanism studies, Bioresour. Technol., 99, 7716-7722 (2008). https://doi.org/10.1016/j.biortech.2008.01.071
- A. Idi, M. H. M. Nor, M. F. A. Wahab, and Z. Ibrahim, Photosynthetic bacteria: An eco-friendly and cheap tool for bioremediation, Rev. Environ. Sci. Biotechnol., 14, 271 (2015).
- P. K. Sarkar and A. K. Banerjee, The effect of nickel on growth, morphology and photopigments of Rhodospirillum photometricum, Folia Microbiol. (Praha), 32, 48-54 (1987). https://doi.org/10.1007/BF02877258
- B. B. Nepple, I. Flynn, and R. Bachofen, Morphological changes in phototrophic bacteria induced by metalloid oxyanions, Microbiol. Res., 154, 191-198 (1999). https://doi.org/10.1016/S0944-5013(99)80014-7
- S. Mohamed Fahmy Gad El-Rab, A. Abdel-Fattah Shoreit, and Y. Fukumori, Effects of cadmium stress on growth, morphology, and protein expression in Rhodobacter capsulatus B10, Biosci. Biotechnol. Biochem., 70, 2394-2402 (2006). https://doi.org/10.1271/bbb.60122
- A. Iyer, K. Mody, and B. Jha, Biosorption of heavy metals by a marine bacterium, Mar. Pollut. Bull., 50, 340-343 (2005). https://doi.org/10.1016/j.marpolbul.2004.11.012
- A. Pal and A. K. Paul, Microbial extracellular polymeric substances: central elements in heavy metal bioremediation, Indian J. Microbiol., 48, 49 (2008).
- M. Pandi, V. Shashirekha, and M. Swamy, Bioabsorption of chromium from retan chrome liquor by cyanobacteria, Microbiol. Res., 164, 420-428 (2009). https://doi.org/10.1016/j.micres.2007.02.009
- A. Smiejan, K. J. Wilkinson, and C. Rossier, Cd bioaccumulation by a freshwater bacterium, Rhodospirillum rubrum, Environ. Sci. Technol., 37, 701-706 (2003). https://doi.org/10.1021/es025901h
- M. Watanabe, K. Kawahara, K. Sasaki, and N. Noparatnaraporn, Biosorption of cadmium ions using a photosynthetic bacterium, Rhodobacter sphaeroides S and a marine photosynthetic bacterium, Rhodovulum sp., and their biosorption kinetics, J. Biosci. Bioeng., 95, 374-378 (2003). https://doi.org/10.1016/S1389-1723(03)80070-1
- L. Giotta, A. Agostiano, F. Italiano, F. Milano, and M. Trotta, Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides, Chemosphere, 62, 1490-1499 (2006). https://doi.org/10.1016/j.chemosphere.2005.06.014
- Y. Feng, Y. Yu, Y. Wang, and X. Lin, Biosorption and bioreduction of trivalent aurum by photosynthetic bacteria Rhodobacter capsulatus, Curr. Microbiol., 55, 402-408 (2007). https://doi.org/10.1007/s00284-007-9007-6
- S. Panwichian, D. Kantachote, B. Wittayaweerasak, and M. Mallavarapu, Isolation of purple nonsulfur bacteria for the removal of heavy metals and sodium from contaminated shrimp ponds, Electron. J. Biotechnol., 13, 3-4 (2010).
- J. F. Imhoff and H. G. Truper, Purple nonsulfur bacteria, Bergey's Manual of Systematic Bacteriology, 3rd ed., 1658-1661, Williams & Wilkins, Philadelphia, United States (1989).
- K. R. Girija, C. Sasikala, C. V. Ramana, C. Sproer, S. Takaichi, V. Thiel, and J. F. Imhoff, Rhodobacter johrii sp. nov., an endosporeproducing cryptic species isolated from semi-arid tropical soils, Int. J. Syst. Evol. Microbiol., 60, 2099-2107 (2010). https://doi.org/10.1099/ijs.0.011718-0
- L. I. Crouch and M. R. Jones, Cross-species investigation of the functions of the Rhodobacter PufX polypeptide and the composition of the RC-LH1 core complex, Biochim. Biophys. Acta Bioenerg., 1817, 336-352 (2012). https://doi.org/10.1016/j.bbabio.2011.10.009
- R. Gourdon, E. Rus, and S. Bhende, Sofer SS Mechanism of cadmium uptake by activated sludge, Appl. Microbiol. Biotechnol., 34, 274-278 (1990). https://doi.org/10.1007/BF00166795
- L. Huang, Y. Xuan, Y. Koide, T. Zhiyentayev, M. Tanaka, and M. R. Hamblin, Type I and Type II mechanisms of antimicrobial photodynamic therapy: An in vitro study on gram-negative and gram-positive bacteria, Lasers Surg. Med., 44, 490-499 (2012). https://doi.org/10.1002/lsm.22045
- E. Barbot, I. Seyssiecq, N. Roche, and B. Marrot, Inhibition of activated sludge respiration by sodium azide addition: Effect on rheology and oxygen transfer, Chem. Eng. J., 230-235 (2010).
- X. Yang and X. Cui, Adsorption characteristics of Pb(II) on alkali-treated tea residue, Water Resour. Ind., 3, 1-10 (2013). https://doi.org/10.1016/j.wri.2013.05.003
- R. Mopoung and N. Kengkhetkit, Lead and cadmium removal efficiency from aqueous solution by NaOH treated pineapple waste, Int. J. Appl. Chem., 12, 23-35 (2016).
- A. Y. Dursun, G. Uslu, O. Tepe, Y. Cuci, and H. I. Ekiz, A comparative investigation on the bioaccumulation of heavy metal ions by growing Rhizopus arrhizus and Aspergillus niger, Biochem. Eng. J., 15, 87-92 (2003). https://doi.org/10.1016/S1369-703X(02)00187-0
- C. Bar, R. Patil, J. Doshi, M. J. Kulkarni, and W. N. Gade, Characterization of the proteins of a bacterial strain isolated from contaminated site involved in heavy metal resistance-A proteomic approach, J. Biotechnol., 128, 444-451 (2007). https://doi.org/10.1016/j.jbiotec.2006.11.010
- u. Acikel and M. Ersan, Acid phosphatase production by Rhizopus delemar: A role played in the Ni (II) bioaccumulation process, J. Hazard. Mater., 184, 632-639 (2010). https://doi.org/10.1016/j.jhazmat.2010.08.083
- A. Mishra and A. Malik, Recent advances in microbial metal bioaccumulation, Crit. Rev. Environ. Sci. Technol., 43, 1162-1222 (2013). https://doi.org/10.1080/10934529.2011.627044
- G. Wei, L Fan, W. Zhu, Y. Fu, J. Yu, and M. Tang, Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China, J. Hazard. Mater., 162, 50-56 (2009). https://doi.org/10.1016/j.jhazmat.2008.05.040
- K. Takeno, K. Sasaki, M. Watanabe, T. Kaneyasu, and N. Nishio, Removal of phosphorus from oyster farm mud sediment using a photosynthetic bacterium, Rhodobacter sphaeroides IL106, J. Biosci. Bioeng., 88, 410-415 (1999). https://doi.org/10.1016/S1389-1723(99)80218-7
- F. Italiano, A. Buccolieri, L. Giotta, A. Agostiano, L. Valli, F. Milano, and M. Trotta, Response of the carotenoids mutant Rhodobacter sphaeroides growing cells to cobalt and nickel exposure, Int. Biodeterior. Biodegradation, 63, 948-957 (2009). https://doi.org/10.1016/j.ibiod.2009.05.001
- N. W. Woodbury, J. P. Allen, R. E. Blankenship, M. T. Madigan, and C. E. Bauer, The pathway, kinetics and thermodynamics of electron transfer in wild type and mutant reaction centers of purple nonsulfur bacteria, Anoxygenic Photosynthetic Bacteria, 527-557, Springer, Berlin, Germany (1995).
- C. L. Wang, P. C. Michels, S. C. Dawson, S. Kitisakkul, J. A. Baross, J. D. Keasling, and D. S. Clark, Cadmium removal by a new strain of Pseudomonas aeruginosa in aerobic culture, Appl. Environ. Microbiol., 63, 4075-4078 (1997). https://doi.org/10.1128/aem.63.10.4075-4078.1997
- C. L. Wang, P. D. Maratukulam, A. M. Lum, D. S. Clark, and J. D. Keasling, Metabolic engineering of an aerobic sulfate reduction pathway and its application to precipitation of cadmium on the cell surface, Appl. Environ. Microbiol., 66, 4497-4502 (2000). https://doi.org/10.1128/AEM.66.10.4497-4502.2000
- C. L. Wang, A. M. Lum, S. C. Ozuna, D. S. Clark, and J. D. Keasling, Aerobic sulfide production and cadmium precipitation by Escherichia coli expressing the Treponema denticola cysteine desulfhydrase gene, Appl. Microbiol. Biotechnol., 56, 425-430 (2001). https://doi.org/10.1007/s002530100660
- S. Panwichian, D. Kantachote, B. Wittayaweerasak, and M. Mallavarapu, Removal of heavy metals by exopolymeric substances produced by resistant purple nonsulfur bacteria isolated from contaminated shrimp ponds, Electron. J. Biotechnol., 14, 2 (2011).
- L. E., Macaskie and A. C. R. Dean, Microbial metabolism, desolubilization, and deposition of heavy metals: Metal uptake by immobilized cells and application to the detoxification of liquid wastes, Advances in Biotechnological Processes, 159-201, lan R. Liss, Inc., New York, United States (1989).
- F. Veglio, F. Beolchini, and A. Gasbarro, Biosorption of toxic metals: an equilibrium study using free cells of Arthrobacter sp, Process Biochem., 32, 99-105 (1997). https://doi.org/10.1016/S0032-9592(96)00047-7
- E. I. Yilmaz, Metal tolerance and biosorption capacity of Bacillus circulans strain EB1, Res. Microbiol., 154, 409-415 (2003). https://doi.org/10.1016/S0923-2508(03)00116-5
- J. E. Sloof, A. Viragh, and B. Veer, Kinetics of cadmium uptake by green algae, Water Air Soil Pollut., 83, 105-122 (1995). https://doi.org/10.1007/BF00482598
- J. S. Chang, R. Law, C. C. Chang, Biosorption of lead, copper and cadmium by biomass of Pseudomonas aeruginosa PU21, Water Res., 31, 1651-1658 (1997).
- I. Bakkaloglu, T. J. Butter, L. M. Evison, F. S. Holland, and I. C. Hancock, Screening of various types biomass for removal and recovery of heavy metals (Zn, Cu, Ni) by biosorption, sedimentation, and desorption, Water Sci. Technol., 38, 269-277 (1998).
- M. Torres, J. Goldberg, and T. E. Jensen, Heavy metal uptake by polyphosphate bodies in living and killed cells of Plectonema boryanum (cyanophycae), Microbios, 96, 141-147 (1998).
- R. Munoz and B. Guieysse, Algal-bacterial processes for the treatment of hazardous contaminants: A review, Water Res., 40, 2799-2815 (2006). https://doi.org/10.1016/j.watres.2006.06.011
- F. A. Al-Momani, A. M. Massadeh, and Y. A. Hadad, Uptake of zinc and copper by halophilic bacteria isolated from the Dead Sea shore, Jordan, Biol. Trace Elem. Res., 115, 291-300 (2007). https://doi.org/10.1007/BF02686003
- M. Gavrilescu, Removal of heavy metals from the environment by biosorption, Eng. Life Sci., 4, 219-232 (2004). https://doi.org/10.1002/elsc.200420026
- M. Prado Acosta, E. Valdman, S. G. Leite, F. Battaglini, and S. M. Ruzal, Biosorption of copper by Paenibacillus polymyxa cells and their exopolysaccharide, World J. Microbiol. Biotechnol., 21, 1157 (2005).