DOI QR코드

DOI QR Code

Strategies to Design Efficient Donor-Acceptor (D-A) Type Emitting Molecules: Molecular Symmetry and Electron Accepting Ability of D-A Type Molecules

  • Hyun Gi Kim (Department of Chemical Engineering, Kyung Hee University) ;
  • Young-Seok Baek (Department of Chemical Engineering, Kyung Hee University) ;
  • Sung Soo Kim (Department of Chemical Engineering, Kyung Hee University) ;
  • Sang Hyun Paek (Department of Chemical Engineering, Kyung Hee University) ;
  • Young Chul Kim (Department of Chemical Engineering, Kyung Hee University)
  • Received : 2023.09.20
  • Accepted : 2023.10.18
  • Published : 2023.12.10

Abstract

We synthesized 2-(10-methyl-10H-phenothiazin-3-yl)-5-phenyl-1,3,4-oxadiazole (MPPO) and 5,5-(10-methyl-10H-phenothiazin-3,7-diyl)-bis-(2-phenyl-1,3,4-oxadiazole) (DPPO). MPPO has both electron-donating and electron-accepting substituents with asymmetric molecular geometry. By incorporating one extra electron-accepting group into MPPO, we created a symmetric molecule, which is DPPO. The optical and electrochemical properties of these compounds were measured. The lowest unoccupied molecular orbital (LUMO) level of DPPO was lower than that of MPPO. The excited-state dipole moment of DPPO, with symmetric geometry, was calculated to be 4.1 Debye, whereas MPPO, with asymmetric geometry, had a value of 7.0 Debye. The charge-carrier mobility of both compounds was similar. We fabricated non-doped organic light-emitting diodes (OLEDs) using D-A type molecules as an emitting layer. The current efficiency of the DPPO-based device was 7.8 cd/A, and the external quantum efficiency was 2.4% at 100 cd/m2, demonstrating significantly improved performance compared to the MPPO-based device. The photophysical and electroluminescence (EL) characteristics of the two D-A type molecules showed that molecular symmetry, as well as the lowered LUMO level of DPPO, played critical roles in the enhancement of EL performance.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A03048004). This work was supported by the GRRC program of Gyeonggi province. (GRRC KYUNGHEE2023-B01), Development of ultra-fine process materials based on the sub-nanometer class for the next-generation semiconductors]. This work was supported by the Korea Basic Science Institute (KBSI) National Research Facilities & Equipment Center (NFEC) grant funded by the Korea government (Ministry of Education). (No.2020R1A6C103B085 & No. 2019R1A6C1010052).

References

  1. E. Mondal, W.-Y. Hung, H.-C. Dai, and K.-T. Wong, Fluorene-based asymmetric bipolar universal hosts for white organic light emitting devices, Adv. Funct. Mater., 23, 3096-3105 (2013).  https://doi.org/10.1002/adfm.201202889
  2. H. D. Pham, L. Xianqiang, W. Li, S. Manzhos, A. K. K. Kyaw, and P. Sonar, Organic interfacial materials for perovskite-based optoelectronic devices, Energy Environ. Sci., 12, 1177-1209 (2019).  https://doi.org/10.1039/C8EE02744G
  3. X. Xu, L. Yu, Q Peng, Recent Avances in Wide Bandgap Polymer Donors and Their Applications in Organic Solar Cells, Chin. J. Chem., 39, 24-254 (2021). 
  4. H. M. Heitzer, T. J. Marks, and M. A. Ratner, Molecular donor-bridge-acceptor strategies for high-capacitance organic dielectric materials, J. Am. Chem. Soc., 137, 7189-7196 (2015).  https://doi.org/10.1021/jacs.5b03301
  5. B. Lu, Y. Huang, Z. Zhang, H. Quan, and Y. Yao, Organic conjugated small molecules with donor-acceptor structures: Design and application in the phototherapy of tumors, Mater. Chem. Front., 6, 2968-2993 (2022).  https://doi.org/10.1039/D2QM00752E
  6. Y. Li, J.-Y. Liu, Y.-D. Zhao, and Y.-C. Cao, Recent advancements of high efficient donor-acceptor type blue small molecule aapplied for OLEDs, Mater. Today., 20, 258-266 (2017).  https://doi.org/10.1016/j.mattod.2016.12.003
  7. T. Yang, Z. Cheng, Z. Li, J. Liang, Y. Xu, C. Li, and Y. Wang, Improving the efficiency of red thermally activated delayed fluorescence organic light-emitting diode by rational isomer engineering, Adv. Funct. Mater., 30, 2002681 (2020).
  8. T. C. Yiu, P. Gnanasekaran, W.-L. Chen, W.-H. Lin, M.-J. Lin, D.-Y. Wang, C.-W. Lu, C.-H. Chang, and Y. J. Chang, Multifaceted sulfone-carbazole-based D-A-D materials: A blue fluorescent emitter as a host for phosphorescent OLEDs and triplet -triplet annihilation up-conversion electroluminescence, ACS Appl. Mater. Interfaces, 15, 1748-1761 (2023).  https://doi.org/10.1021/acsami.2c21294
  9. L. Xue, J. He, X. Gu, Z. Yang, B. Xu, and W. Tian, Efficient bulk-heterojunction solar cells based on a symmetrical D-Π-A-Π -D organic dye molecule, J. Phys. Chem. C, 113, 12911-12917 (2009).  https://doi.org/10.1021/jp902976w
  10. K. H. Choi, J. M. Kim, W. J. Chung, and J. Y. Lee, Effects of substitution position of carbazole-dibenzofuran based high triplet energy hosts to device stability of blue phosphorescent organic light-emitting diodes, Molecules, 26, 2804 (2021). 
  11. J. Lee, K. Shizu, H. Tanaka, H. Nomura, T. Yasuda, and C. Adachi, Oxadiazole-and triazole-based highly-efficient thermally activated delayed fluorescence emitters for organic light-emitting diodes, J. Mater. Chem. C, 1, 4599-4604 (2013).  https://doi.org/10.1039/c3tc30699b
  12. Y. Li, X.-L. Li, D. Chen, X. Cai, G. Xie, Z. He, Y.-C. Wu, A. Lien, Y. Cao, and S.-J. Su, Design strategy of blue and yellow thermally activated delayed fluorescence emitters and their all-fluorescence white OLEDs with external quantum efficiency beyond 20%, Adv. Funct. Mater., 26, 6904-6912 (2016).  https://doi.org/10.1002/adfm.201602507
  13. L. K. Noda and N. S. Goncalves, Assignment of the electronic transition of phenothiazine radical cation in the visible regione a resonance Raman spectroscopy and theoretical calculation investigation, J. Mol. Struct., 1191, 253-258 (2019).  https://doi.org/10.1016/j.molstruc.2019.04.053
  14. Z. Li, W. Li, C. Keum, E. Archer, B. Zhao, A. M. Z. Slawin, W. Huang, M. C. Gather, I. D. W. Samuel, and E. Zysman-Colman, 1,3,4-oxadiazole-based deep blue thermally activated delayed fluorescence emitters for organic light emitting diodes, J. Phys. Chem. C, 123, 24772-24785 (2019).  https://doi.org/10.1021/acs.jpcc.9b08479
  15. S. Xiang, R. Guo, Z. Huang, X. Lv, S. Sun, H. Chen, Q. Zhang, and L. Wang, Highly efficient yellow nondoped thermally activated delayed fluorescence OLEDs by utilizing energy transfer between dual conformations based on phenothiazine derivatives, Dyes Pigm., 170, 107636 (2019). 
  16. S. Xiang, Z. Huang, S. Sun, X. Lv, L. Fan, S. Ye, H. Chen, R. Guo, and L. Wang, Highly efficient non-doped OLEDs using aggregation-induced delayed fluorescence materials based on 10-phenyl-10H-phenothiazine 5,5-dioxide derivatives, J. Mater. Chem. C, 6, 11436-11443 (2018).  https://doi.org/10.1039/C8TC03648A
  17. X.-H. Zhang, S. H. Kim, I. S. Lee, C. J. Gao, S. I. Yang, and K. H. Ahn, Synthesis, photophysical and electrochemical properties of novel conjugated donor-acceptor molecules based on phenothiazine and benzimidazole, Bull. Korean Chem. Soc., 28, 1389-1395 (2007).  https://doi.org/10.5012/bkcs.2007.28.8.1389
  18. R. Sreenivasulu, M. B. Tej, S. S. Jadav, P. Sujitha, C. G. Kumar, and R. R. Raju, Synthesis, anticancer evaluation and molecular docking studies of 2,5-bis(indolyl)-1,3,4-oxadiazoles, Nortopsentin analogues, J. Mol. Struct., 1208, 127875 (2020).
  19. H. Shen, Y. Li, and Y. Li, Self-assembly and tunable optical properties of intramolecular charge transfer molecules, Aggregate, 1, 57-68 (2020). https://doi.org/10.1002/agt2.6
  20. V. Gopia, S. Subbiahraja, K. Chemmanghattu, P. C. Ramamurthy, 2,3-di(2-furyl) quinoxaline bearing 3 -ethyl rhodanine and 1,3 indandione based heteroaromatic conjugated T-shaped push -pull chromophores: Design, synthesis, photophysical and non-linear optical investigations, Dyes Pigm., 173, 107887 (2020).
  21. Y. Zhang, Y. Wang, C. Gao, Z. Ni, X. Zhang, W. Hude, and H. Dong, Recent advances in n-type and ambipolar organic semiconductors and their multi-functional applications, Chem. Soc. Rev., 52, 1331 (2023). 
  22. H. M. Diab, A. M. Abdelmoniem, M. R. Shaaban, I. A. Abdelhamid, and A. H. M. Elwahy, An overview on synthetic strategies for the construction of star-shaped molecules, RSC Adv., 9, 16606 (2019). 
  23. M. L. Wilde, J. Menz, C. LEder, and K. Kummerer, Combination of experimental and in silico methods for the assessment of the phototransformation products of the antipsychotic drug/metabolite Mesoridazine, Sci. Total Environ., 618, 697-711 (2018).  https://doi.org/10.1016/j.scitotenv.2017.08.040
  24. Y.Yu, Z.Yu, Z.Ma, J. Jiang, and D. Hu, D-π-A-π-D-type Fluorophores based on Pyridal[2,1,3]thiadiazole acceptor with hybridized local and charge-transfer excited-state for high-efficiency OLEDs, Dyes Pigm., 208, 110868. (2022). 
  25. M. Soroceanu, C.-P. Constantin, and M.-D. Damaceanu, A straightforward synthetic strategy towards conjugated donor-acceptor naphthylimido-azomethines with tunable films morphologies and opto-electronic properties, Prog. Org. Coat., 166, 106785 (2022). 
  26. S. Sasaki, G. P. C. Drummen, and G. I. Konishi, Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry, J. Mater. Chem. C, 4, 2731-2743 (2016).  https://doi.org/10.1039/C5TC03933A
  27. N. J. Turro, V. Ramamurthy, and J. C. Scaiano, Modern Molecular Photochemistry of Organic Molecules, 127, University Science Books, Sausalito (California), USA (2010). 
  28. C. Wang, W. Chi, Q. Qiao, D. Tan, Z. Xu, and X. Liu, Twisted intramolecular charge transfer (TICT) and twists beyond TICT: From mechanisms to rational designs of bright and sensitive fluorophores, Chem. Soc. Rev., 50, 12656-12678 (2021).  https://doi.org/10.1039/D1CS00239B
  29. M. Sun, T. Li, M. Xie, H. Zhou, Q. Sun, D. Liu, Y. Pan, S. Zhang, W. Yang, and S. Xue, Highly efficient deep-blue electrofluorescence with optimized excited state composition and "hot-exciton" channel, Dyes Pigm., 210, 111002 (2023). 
  30. J. Kumsampao, C. Chaiwai, C. Sukpattanacharoen, P. Nalaoh, T. Chawanpunyawat, P. Chasing, S. Namuangruk, N. Kungwan, T. Sudyoadsuk, and V. Promarak, Solid-state fluorophores with combined excited-state intramolecular proton transfer-aggregation-induced emission as efficient emitters for electroluminescent devices, Adv. Photonics Res., 3, 2100141 (2022). 
  31. B. Valeur and M. N. Berberan-Santos, Molecular Fluorescence: Principles and Applications, 2nd ed., 53, John Wiley & Sons, Weinheim, Germany (2012). 
  32. X. Xiang, Y. Zhan, W. Yang, and F. Jin, Aggregation-induced emission and distinct mechanochromic luminescence based on symmetrical D-A-D type and unsymmetrical D-A type carbazole functionalized dicyanovinyl derivatives, J. Lumin., 252, 119287 (2022). 
  33. H. Liu, S. Yan, R. Huang, Z. Gao, G. Wang, L. Ding, Y. Fang, Single-benzene-based solvatochromic chromophores: color-tunable and bright fluorescence in the solid and solution states, Chem. Eur. J., 25, 16732-16739 (2019).  https://doi.org/10.1002/chem.201904478
  34. M.-L. Hebestreit, H. Lartian, C. Henrichs, R. Kuhnemuth, W. L. Meerts, and M. Schmitt, Excited state dipole moments and lifetimes of 2-cyanoindole from rotationally resolved electronic Stark spectroscopy, Phys. Chem. Chem. Phys., 23, 10196-10204 (2021).  https://doi.org/10.1039/D1CP00097G
  35. C.-H. Chen, Y. Wang, T. Michinobu, S.-W. Chang, Y.-C. Chiu, C.-Y. Ke, and G.-S. Liou, Donor-acceptor effect of carbazole-based conjugated polymer electrets on photoresponsive flash organic field-effect transistor memories, ACS Appl. Mater. Interfaces, 12, 6144-6150 (2020). https://doi.org/10.1021/acsami.9b20960
  36. D. Kim, Y. J. Lee, D.-H. Ahn, J.-W. Song, J. Seo, and H. Lee, Peptoid-conjugated magnetic field-sensitive exciplex system at high and low solvent polarities, J. Phys. Chem. Lett., 11, 4668-4677 (2020). https://doi.org/10.1021/acs.jpclett.0c00636
  37. M. Poddar, A. Cesaretti, E. Ferraguzzi, B. Carlotti, and R. Misra, Singlet and triplet excited-state dynamics of 3,7-bis(arylethynyl) phenothiazines: intramolecular charge transfer and reverse intersystem crossing, J. Phys. Chem. C, 124, 17864-17878 (2020). https://doi.org/10.1021/acs.jpcc.0c01786