Acknowledgement
This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2018-0-00225, Development of City Interior Digital Twin Technology to establish Scientific Policy).
References
- K. H. Law and J. P. Lynch, Smart city: Technologies and challenges, IT Prof. 21 (2019), no. 6, 46-51. https://doi.org/10.1109/mitp.2019.2935405
- L. Caggiani, R. Camporeale, M. Ottomanelli, and W. Y. Szeto, A modeling framework for the dynamic management of freefloating bike-sharing systems, Transp. Res. Part C: Emerg. Technol. 87 (2018), 159-182. https://doi.org/10.1016/j.trc.2018.01.001
- Y. Cheng, J. Wang, and Y. Wang, A user-based bike rebalancing strategy for free-floating bike sharing systems: A bidding model, Transp. Res. Part E 154 (2021), 102438. https://doi.org/10.1016/j.tre.2021.102438
- F. Chiariotti, C. Pielli, A. Zanella, and M. Zorzi, A dynamic approach to rebalancing bike-sharing systems, Sensors 18 (2018), no. 2, 512. https://doi.org/10.3390/s18020512
- M. Dell Amico, M. Iori, S. Novellani, and A. Subramanian, The bike sharing rebalancing problem with stochastic demands, Trans. Res. Part B 118 (2018), 362-380. https://doi.org/10.1016/j.trb.2018.10.015
- P. Leclaire and F. Couffin, Method for static rebalancing of a bike sharing system, IFAC-PapersOnLine 51 (2018), no. 11, 1561-1566. https://doi.org/10.1016/j.ifacol.2018.08.274
- B. Legros, Dynamic repositioning strategy in a bike-sharing system; how to prioritize and how to rebalance a bike station, Eur. J. Oper. Res. 272 (2019), 740-753. https://doi.org/10.1016/j.ejor.2018.06.051
- K. B. Svenja Reiss, A relocation strategy for munich's bike sharing system: Combining an operator-based and a user-based scheme, Transp. Res. Procedia 22 (2017), 105-114. https://doi.org/10.1016/j.trpro.2017.03.016
- Z. Tian, J. Zhou, W. Y. Szeto, and L. Tian, The rebalancing of bike-sharing system under flow-type task window, Transp. Res. Part C: Emerg. Technol. 112 (2020), 1-27. https://doi.org/10.1016/j.trc.2020.01.015
- L. Caggiani, R. Camporeale, Z. Hamidi, and C. Zhao, Evaluating the efficiency of bike-sharing stations with data envelopment analysis, Sustainability 13 (2021), no. 2.
- Y. Feng, R. C. Affonso, and M. Zolghadri, Analysis of bike sharing system by clustering: the velib' case, IFAC-PapersOnLine 50 (2017), no. 1, 12422-12427. https://doi.org/10.1016/j.ifacol.2017.08.2430
- D. Li, Y. Zhao, and Y. Li, Time-series representation and clustering approaches for sharing bike usage mining, IEEE Access 7 (2019), 177856-177863. https://doi.org/10.1109/access.2019.2958378
- Y. Yao, Y. Zhang, L. Tian, N. Zhou, Z. Li, and M. Wang, Analysis of network structure of urban bike-sharing system: A case study based on real-time data of a public bicycle system, Sustainability 11 (2019), no. 19, 5425. https://doi.org/10.3390/su11195425
- X. Zhou, Understanding spatiotemporal patterns of biking behavior by analyzing massive bike sharing data in chicago, PLOS ONE 10 (2015), e0137922. https://doi.org/10.1371/journal.pone.0137922
- https://en.wikipedia.org/wiki/Data_envelopment_analysis
- G. Cantelmo, R. Kucharski, and C. Antoniou, Low-dimensional model for bike-sharing demand forecasting that explicitly accounts for weather data, Transp. Res. Record 2674 (2020), no. 8, 132-144. https://doi.org/10.1177/0361198120932160
- P. Hulot, D. Aloise, and S. D. Jena, Towards station-level demand prediction for effective rebalancing in bike-sharing systems, (ACM SIGKDD international conference on knowledge discovery & data mining KDD, London, UK), Aug. 2018, pp. 378-386.
- X. Liu and K. Pelechrinis, Excess demand prediction for bike sharing systems, PLOS ONE 16 (2021), e0252894. https://doi.org/10.1371/journal.pone.0252894
- Y. Pan, R. C. Zheng, J. Zhang, and X. Yao, Predicting bike sharing demand using recurrent neural networks, Procedia Comput. Sci. 147 (2018), 562-566.
- A. A. Ramesh, S. P. Nagisetti, N. Sridhar, K. Avery, and D. Bein, Station-level demand prediction for bike-sharing system, (IEEE 11th Annual Computing and Communication Workshop and Conference, Las Vegas, NV, USA), Jan. 2021, pp. 916-921.
- C. Sardinha, A. C. Finamore, and R. Henriques, Context-aware demand prediction in bike sharing systems: incorporating spatial, meteorological and calendrical context, 2021. https://arxiv. org/abs/2105.01125
- D. Singhvi, S. Singhvi, P. I. Frazier, S. G. Henderson, E. O'Mahony, D. B. Shmoys, and D. B. Woodard, Predicting bike usage for new york city's bike sharing system (Computational Sustainability, Papers from the 2015 AAAI Workshop, Austin, Texas, USA), Jan. 2015.
- D. Singhvi, S. Singhvi, P. I. Frazier, S. G. Henderson, E. O'Mahony, D. B. Shmoys and D. B. Woodard, Predicting bike usage for new york city's bike sharing system (Computational Sustainability, Papers from the 2015 AAAI Workshop, Austin, Texas, USA), Jan. 2015.
- S. Ve and Y. Cho, A rule-based model for seoul bike sharing demand prediction using weather data, Eur. J. Remote Sensing 53 (2020), no. S1, 166-183. https://doi.org/10.1080/22797254.2020.1725789
- N. Gast, G. Massonnet, D. Reijsbergen, and M. Tribastone, Probabilistic forecasts of bike-sharing systems for journey planning (CIKM '15: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, Melbourne Australia), Oct. 2015, pp. 703-712.
- S. Ghosh, P. Varakantham, Y. Adulyasak, and P. Jaillet, Dynamic repositioning to reduce lost demand in bike sharing systems, J. Artif. Intell. Res. 58 (2017), 387-430. https://doi.org/10.1613/jair.5308
- C.-H. Lee, J.-W. Lee, Y.-J. Jung and I.-Y. Ch, Relocation framework to improve the usage efficiency of bicycle-sharing systems (23rd International Conference on Advanced Communication Technology, Pyeong Chang, Rep. of Korea), Feb. 2021. https:// doi.org/10.23919/ICACT51234.2021.9370711
- https://scikit-learn.org/stable/auto_examples/model_ selection/plot_roc.html
- https://scikit-learn.org/stable/modules/generated/sklearn. multiclass.OneVsRestClassifier.html