DOI QR코드

DOI QR Code

Design and fabrication of a novel multilayer bandpass filter with high-order harmonics suppression using parallel coupled microstrip filter

  • Received : 2020.08.28
  • Accepted : 2021.07.16
  • Published : 2022.04.10

Abstract

This study presents a novel multilayer structure of parallel coupled-line bandpass filtercentered at 2.42 GHz with a fractional bandwidth value of approximately 19.4%. The designed filter can suppress harmonics with an appropriate frequency response by incorporating different techniques based on the multilayer technique. A combination of different techniques such as radial microstrip stubs and defected ground structure (DGS) and defected microstrip structure techniques are employed to suppress harmonics up to 5f0. These techniques are used in two layers to suppress up to 5f0. In addition, in this study, the effects of different parameters, such as the width of slot-line DGS, the angle of diagonal line slots in the upper layer, and the air gap between the two layers on the filter performance, are investigated. To verify the correct circuit operation, the designed filter is implemented and tested. The measurement results of the proposed filter are compared with the simulation results.

Keywords

References

  1. M. Taghizadeh, G. Moloudian, and A. Rouzbeh, Design and simulation of band-pass filter using micro-strip lines, Comput. Sci. Inf. Technol. 4 (2015), no. 11, 331-337.
  2. D. M. Pozar, Microwave Engineering, 4th ed., John Wiley & Sons, Hoboken, NJ, USA, 2011.
  3. A. Ghaderi, A. Golestanifar, and F. Shama, Microstrip bandpass filters using coupled feed lines for third and fourth generation communications, AEU Int. J. Electron. Commun. 86 (2018), 195-201. https://doi.org/10.1016/j.aeue.2018.02.007
  4. A. Ghaderi, A. Golestanifar, and F. Shama, Design of a compact microstrip tunable dual-band bandpass filter, AEU Int. J. Electron. Commun. 82 (2017), 391-396. https://doi.org/10.1016/j.aeue.2017.10.002
  5. R. T. Hammed, Miniaturized dual-band bandpass filter using E-shape microstrip structure, AEU Int. J. Electron. Commun. 69 (2015), 1667-1671. https://doi.org/10.1016/j.aeue.2015.08.003
  6. F. Bagci et al., Compact balanced dual-band bandpass filter based on modified coupled-embedded resonators, IEEE Microw. Wirel. Compon. Lett. 27 (2016), no. 1, 31-33. https://doi.org/10.1109/LMWC.2016.2629962
  7. G. A. Hussain, Design of parallel coupled microstrip band-pass filter, Int. J. Comput. Technol. 15 (2016), 6768-6775. https://doi.org/10.24297/ijct.v15i5.1650
  8. Y. Chang, W. Feng, and W. Che, Dual-band bandpass filters with high isolation using coupled lines, Int. J. Electron. 103 (2016), no. 3, 372-383. https://doi.org/10.1080/00207217.2015.1036373
  9. S. A. Gohari, K. Mafinezhad, and M. Dousti, A novel analytical technique to omit the spurious passband in inductively coupled bandpass filter structures, AEU Int. J. Electron. Commun. 70 (2016), no. 1, 8-17. https://doi.org/10.1016/j.aeue.2015.09.010
  10. B. Mohammed, R. Mandry, and F. Aytouna, Square complementary split ring resonator (CSRR) low pass filter, in Proc. Int. Conf. Comput. Wirel. Commun. Syst. (Kenitra, Morocco), Apr. 2019, doi: 10.4108/eai.24-4-2019.2284083.
  11. V. K. Killamsetty and B. Mukherjee, Compact triple band bandpass filters design using mixed coupled resonators, AEU Int. J. Electron. Commun. 107 (2019), 49-56. https://doi.org/10.1016/j.aeue.2019.03.005
  12. S. K. Parui and S. Das, A new defected ground structure for different microstrip circuit applications, Radioengineering 16 (2007), no. 1, 16-22.
  13. S. Tantiviwat, S. Z. Ibrahim, and M. S. Razalli, Design of quad-channel diplexer and tri-band bandpass filter based on multiple-mode stub-loaded resonators, Radioengineering 28 (2019), no. 1, 129-135.
  14. Y. J. Cai et al. Super high-selectivity fifth-order bandpass filter with twelve transmission zeros, Radioengineering 27 (2018), no. 4, 1038-1042. https://doi.org/10.13164/re.2018.1038
  15. X. Kai-Da, D. Li, and Y. Liu, High-selectivity wideband bandpass filter using simple coupled lines with multiple transmission poles and zeros, IEEE Microw. Wirel. Compon. Lett. 29 (2019), no. 2, 107-109. https://doi.org/10.1109/lmwc.2019.2891203
  16. D. Li, X. Kai-Da, and Z. Anxue, Single-ended and balanced bandpass filters using multiple pairs of coupled lines and stepped-impedance stubs, IEEE Access 8 (2020), 13541-13548. https://doi.org/10.1109/access.2020.2965746
  17. S. Lu et al., Bandpass filter using coupled-line-stub cascaded structure with high stopband rejection, Microw. Opt. Technol. Lett. 63 (2021), no. 1, 69-74. https://doi.org/10.1002/mop.32555
  18. G. Karimi, A. Salehi, and F. Javidan, Miniaturized (UWB) band pass filter using elliptical-ring multi-mode stub-loaded resonator (MM-SLR), Radioengineering 27 (2018), no. 3, 732-737. https://doi.org/10.13164/re.2018.0732
  19. G. L. Matthaei, L. Young, and M. J. Edward, Microwave Filters, Impedance-Matching Networks and Coupling Structures, McGraw-Hil, New York, NJ, USA, 1964.
  20. J. T. Kuo, S. P. Chen, and M. Jiang, Parallel-coupled microstrip filters with over-coupled end stages for suppression of spurious responses, IEEE Microw. Wireless. Component. Lett. 13 (2003), no. 10, 440-442. https://doi.org/10.1109/LMWC.2003.818531
  21. T. Lopetegi et al., Microstrip "wiggly-line" bandpass filters with multispurious rejection, IEEE Microw. Wireless. Component. Lett. 14 (2004), no. 11, 531-533. https://doi.org/10.1109/LMWC.2004.837062
  22. A. Griol et al., Microstrip multistage coupled ring bandpass filters using photonic bandgap structures for harmonic suppression, Electron. Lett. 39 (2003), no. 1, 68-70. https://doi.org/10.1049/el:20030022
  23. D. Ahn et al., A design of the low-pass filter using the novel microstrip defected ground structure, IEEE Trans. Microw. Theor. Tech. 49 (2001), no. 1, 86-93. https://doi.org/10.1109/22.899965
  24. J. S. Park, J. S. Yun, and D. A. Ahn, Design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance, IEEE Trans. Microw. Theor. Tech. 50 (2002), no. 9, 2037-2043. https://doi.org/10.1109/TMTT.2002.802313
  25. D. Piscarreta and S. W. Ting, Microstrip parallel coupled-line bandpass filter with selectivity improvement using U-shaped defected ground structure, Microw. Opt. Technol. Lett. 50 (2008), no. 4, 911-915. https://doi.org/10.1002/mop.23236
  26. I. J. Bahl, Capacitively compensated high performance parallel coupled microstrip filters, in Proc. IEEE MTT-S Int. Microw. Symp. Dig. (Long Beach, CA, USA), June 1989, pp. 679-682.
  27. J. T. Kuo, M. Jiang, and H. J. Chang, Design of parallel-coupled microstrip filters with suppression of spurious resonances using substrate suspension, IEEE Trans. Microw. Theor. Tech. 52 (2004), no. 1, 83-89. https://doi.org/10.1109/TMTT.2003.821247
  28. T. Lopetegi et al., New microstrip "wiggly-line" filters with spurious passband suppression, IEEE Trans. Microw. Theor. Tech. 49 (2001), no. 9, 1593-1598. https://doi.org/10.1109/22.942571
  29. T. K. Das and S. Chatterjee, Performance of periodic grooves on harmonic rejection in C band folded edge coupled microstrip band pass filters, in Computational Science and Engineering, CRC Press, London, UK, 2016, pp. 205-209.
  30. J. T. Kuo and M. H. Wu, Corrugated parallel-coupled line bandpass filters with multispurious suppression, IET Microw. Antennas Propag. 1 (2007), no. 3, 718-722. https://doi.org/10.1049/iet-map:20060130
  31. T. K. Das and S. Chatterjee, Spurious harmonic suppression in a folded parallel-coupled microstrip bandpass filter by using triangular corrugations, in Proc. Devices Integr. Circuit (Kalyani, India), Mar. 2017, pp. 391-395.
  32. W. L. Chen and G. M. Wang, Effective design of novel compact fractal-shaped microstrip coupled-line bandpass filters for suppression of the second harmonic, IEEE Microw. Wirel. Compon. Lett. 19 (2009), no. 2, 74-76. https://doi.org/10.1109/LMWC.2008.2011311
  33. S. Wang et al., Miniaturized spurious passband suppression microstrip filter using meandered parallel coupled lines, IEEE Trans. Microw. Theor. Tech. 53 (2005), no. 2, 747-753. https://doi.org/10.1109/TMTT.2004.840619
  34. T. K. Das and S. Chatterjee, Harmonic suppression in an in-line Chebyshev bandpass filter by asymmetrical perturbations, in Proc. IEEE MTT-S Int. Microw. RF Conf. (Ahmedabad, India), Dec. 2017, pp. 1-5.
  35. S. Sonasang and R. Phromloungsri, Improvement of microstrip band pass filter harmonic spurious suppression performance using band stop filter feed lines, Kasem Bundit Eng. J. 8 (2018), 239-246.
  36. J. Marimuthu and M. Esa, Wideband and harmonic suppression method of parallel coupled microstrip bandpass filter using centered single groove, in Proc. IEEE Int. Conf. Telecommun. Malays. Int. Conf. Commun. (Penang, Malaysia), May 2007, pp. 622-626.
  37. H. Sajjad et al., A compact hairpin filter with stepped hairpin defected ground structure, in Proc. IEEE Int. Multi-Topic Conf. (Karachi, Pakistan), Nov. 2018, pp. 1-5.
  38. M. N. Mollah, N. C. Karmakar, and J. S. Fu, Uniform circular photonic bandgap structures (PBGSs) for harmonic suppression of a bandpass filter, AEU Int. J. Electron. Commun. 62 (2008), no. 10, 717-724. https://doi.org/10.1016/j.aeue.2006.10.007
  39. C. H. Kim and K. Chang, Wide-stopband bandpass filters using asymmetric stepped-impedance resonators, IEEE Microw. Wirel. Compon. Lett. 23 (2013), no. 2, 69-71. https://doi.org/10.1109/LMWC.2012.2236885
  40. W. Nie et al., Compact bandpass filter with improved upper stopband, Electron. Lett. 50 (2014), no. 15, 1065-1067. https://doi.org/10.1049/el.2014.1164
  41. B. Zhang et al., Miniaturised wideband bandpass filter based on harmonic suppressed dual transmission lines, Electron. Lett. 52 (2016), no. 9, 734-736. https://doi.org/10.1049/el.2016.0361
  42. S. Chatterjee and T. K. Das, Multispurious harmonic suppression in compact coupled-line bandpass filters by trapezoidal corrugations, in Proc. IEEE Mediterr. Microw. Symp. (Istanbul, Turkey), Nov. 2018, pp. 149-152.
  43. T. K. Das and S. Chatterjee, Improved second harmonic suppression in a compact coupled-line bandpass filter with triangular corrugations, Microsyst. Technol. 25 (2019), no. 5, 1945-1956. https://doi.org/10.1007/s00542-018-3940-0
  44. T. K. Das and S. Chatteqee, 2nd harmonic suppression in parallel-coupled microstrip bandpass filter by using koch fractals, in Proc. IEEE Annu. India Conf. (Bangalore, India), Dec. 2016, pp. 1-6.
  45. S. Chatterjee, T. K. Das, and B. Gupta, Harmonic suppression in in-line parallel-coupled microstrip bandpass filter by Minkowski fractals, in Proc. IEEE Mediterr. Microw. Symp. (MMS), (Marseille, France), Nov. 2017, pp. 1-4.
  46. A. Abdipourm, A. Abdipour, and E. Zare, A design of branch-line coupler with harmonic suppression and size reduction using closed-loop and open-loop resonators, Radioengineering 26 (2017), no. 4, 999-1005. https://doi.org/10.13164/re.2017.0999
  47. T. K. Das and S. Chatterjee, Spurious harmonic suppression in compact coupled-line bandpass filter with asymmetric perturbations, Int. J. Electron. 107 (2019), no. 4, 576-595. https://doi.org/10.1080/00207217.2019.1672801
  48. J. S. G. Hong and M. J. Lancaster, Microstrip Filters For RF/Microwave Applications, John Wiley & Sons, New York, NY, USA, 2004.
  49. T. C. Edwards and M. B. Steer, Foundations for Microstrip Circuit Design, 4th ed., John Wiley & Sons, Chichester, UK, 2016.
  50. T. Gunel and S. Kent, Numerical modeling of microstrip radial stub, J. Microw. Power Electromagn. Energy 32 (1997), no. 4, 246-250. https://doi.org/10.1080/08327823.1997.11688349
  51. G. N. Satish et al., A via-free left-handed transmission line with radial stubs, in Proc. Asia Pac. Microw. Conf. (Singapore, Singapore), Dec. 2009, pp. 2501-2504.
  52. V. Sadhir and I. J. Bahl, Radial line structures for broadband microwave circuit applications, Microw. J. 34 (1991), 102.
  53. H. Kwon, H. Lim, and B. Kang, Design of 6-18 GHz wideband phase shifters using radial stubs, IEEE Microw. Wirel. Compon. Lett. 17 (2007), no. 3, 205-207. https://doi.org/10.1109/LMWC.2006.890481
  54. J. T. Kuo and M. Jiang, Enhanced microstrip filter design with a uniform dielectric overlay for suppressing the second harmonic response, IEEE Microw. Wirel. Compon. Lett. 14 (2004), no. 9, 419-421. https://doi.org/10.1109/LMWC.2004.832068
  55. J. Cui, C. Haojie, and Z. Renli, High selectivity slot-coupled bandpass filter using discriminating coupling and source-load coupling, Appl. Sci. 10 (2020), no. 19, doi: 10.3390/app10196807.