Browse > Article
http://dx.doi.org/10.4218/etrij.2020-0330

Design and fabrication of a novel multilayer bandpass filter with high-order harmonics suppression using parallel coupled microstrip filter  

Fathi, Esmaeil (Department of Electrical Engineering, Islamic Azad University)
Setoudeh, Farbod (Faculty of Electrical Engineering, Arak University of Technology)
Tavakoli, Mohammad Bagher (Department of Electrical Engineering, Islamic Azad University)
Publication Information
ETRI Journal / v.44, no.2, 2022 , pp. 260-273 More about this Journal
Abstract
This study presents a novel multilayer structure of parallel coupled-line bandpass filtercentered at 2.42 GHz with a fractional bandwidth value of approximately 19.4%. The designed filter can suppress harmonics with an appropriate frequency response by incorporating different techniques based on the multilayer technique. A combination of different techniques such as radial microstrip stubs and defected ground structure (DGS) and defected microstrip structure techniques are employed to suppress harmonics up to 5f0. These techniques are used in two layers to suppress up to 5f0. In addition, in this study, the effects of different parameters, such as the width of slot-line DGS, the angle of diagonal line slots in the upper layer, and the air gap between the two layers on the filter performance, are investigated. To verify the correct circuit operation, the designed filter is implemented and tested. The measurement results of the proposed filter are compared with the simulation results.
Keywords
bandpass filter; defected microstrip structure (DMS); defective ground structure (DGS); harmonics suppression; parallel coupling lines;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Lu et al., Bandpass filter using coupled-line-stub cascaded structure with high stopband rejection, Microw. Opt. Technol. Lett. 63 (2021), no. 1, 69-74.   DOI
2 D. M. Pozar, Microwave Engineering, 4th ed., John Wiley & Sons, Hoboken, NJ, USA, 2011.
3 R. T. Hammed, Miniaturized dual-band bandpass filter using E-shape microstrip structure, AEU Int. J. Electron. Commun. 69 (2015), 1667-1671.   DOI
4 Y. Chang, W. Feng, and W. Che, Dual-band bandpass filters with high isolation using coupled lines, Int. J. Electron. 103 (2016), no. 3, 372-383.   DOI
5 V. K. Killamsetty and B. Mukherjee, Compact triple band bandpass filters design using mixed coupled resonators, AEU Int. J. Electron. Commun. 107 (2019), 49-56.   DOI
6 Y. J. Cai et al. Super high-selectivity fifth-order bandpass filter with twelve transmission zeros, Radioengineering 27 (2018), no. 4, 1038-1042.   DOI
7 D. Piscarreta and S. W. Ting, Microstrip parallel coupled-line bandpass filter with selectivity improvement using U-shaped defected ground structure, Microw. Opt. Technol. Lett. 50 (2008), no. 4, 911-915.   DOI
8 I. J. Bahl, Capacitively compensated high performance parallel coupled microstrip filters, in Proc. IEEE MTT-S Int. Microw. Symp. Dig. (Long Beach, CA, USA), June 1989, pp. 679-682.
9 T. Lopetegi et al., New microstrip "wiggly-line" filters with spurious passband suppression, IEEE Trans. Microw. Theor. Tech. 49 (2001), no. 9, 1593-1598.   DOI
10 W. L. Chen and G. M. Wang, Effective design of novel compact fractal-shaped microstrip coupled-line bandpass filters for suppression of the second harmonic, IEEE Microw. Wirel. Compon. Lett. 19 (2009), no. 2, 74-76.   DOI
11 T. K. Das and S. Chatterjee, Harmonic suppression in an in-line Chebyshev bandpass filter by asymmetrical perturbations, in Proc. IEEE MTT-S Int. Microw. RF Conf. (Ahmedabad, India), Dec. 2017, pp. 1-5.
12 W. Nie et al., Compact bandpass filter with improved upper stopband, Electron. Lett. 50 (2014), no. 15, 1065-1067.   DOI
13 S. Sonasang and R. Phromloungsri, Improvement of microstrip band pass filter harmonic spurious suppression performance using band stop filter feed lines, Kasem Bundit Eng. J. 8 (2018), 239-246.
14 H. Sajjad et al., A compact hairpin filter with stepped hairpin defected ground structure, in Proc. IEEE Int. Multi-Topic Conf. (Karachi, Pakistan), Nov. 2018, pp. 1-5.
15 M. N. Mollah, N. C. Karmakar, and J. S. Fu, Uniform circular photonic bandgap structures (PBGSs) for harmonic suppression of a bandpass filter, AEU Int. J. Electron. Commun. 62 (2008), no. 10, 717-724.   DOI
16 T. K. Das and S. Chatterjee, Improved second harmonic suppression in a compact coupled-line bandpass filter with triangular corrugations, Microsyst. Technol. 25 (2019), no. 5, 1945-1956.   DOI
17 T. K. Das and S. Chatteqee, 2nd harmonic suppression in parallel-coupled microstrip bandpass filter by using koch fractals, in Proc. IEEE Annu. India Conf. (Bangalore, India), Dec. 2016, pp. 1-6.
18 A. Abdipourm, A. Abdipour, and E. Zare, A design of branch-line coupler with harmonic suppression and size reduction using closed-loop and open-loop resonators, Radioengineering 26 (2017), no. 4, 999-1005.   DOI
19 T. C. Edwards and M. B. Steer, Foundations for Microstrip Circuit Design, 4th ed., John Wiley & Sons, Chichester, UK, 2016.
20 J. T. Kuo, M. Jiang, and H. J. Chang, Design of parallel-coupled microstrip filters with suppression of spurious resonances using substrate suspension, IEEE Trans. Microw. Theor. Tech. 52 (2004), no. 1, 83-89.   DOI
21 S. Wang et al., Miniaturized spurious passband suppression microstrip filter using meandered parallel coupled lines, IEEE Trans. Microw. Theor. Tech. 53 (2005), no. 2, 747-753.   DOI
22 T. K. Das and S. Chatterjee, Performance of periodic grooves on harmonic rejection in C band folded edge coupled microstrip band pass filters, in Computational Science and Engineering, CRC Press, London, UK, 2016, pp. 205-209.
23 J. T. Kuo and M. H. Wu, Corrugated parallel-coupled line bandpass filters with multispurious suppression, IET Microw. Antennas Propag. 1 (2007), no. 3, 718-722.   DOI
24 T. K. Das and S. Chatterjee, Spurious harmonic suppression in a folded parallel-coupled microstrip bandpass filter by using triangular corrugations, in Proc. Devices Integr. Circuit (Kalyani, India), Mar. 2017, pp. 391-395.
25 J. Marimuthu and M. Esa, Wideband and harmonic suppression method of parallel coupled microstrip bandpass filter using centered single groove, in Proc. IEEE Int. Conf. Telecommun. Malays. Int. Conf. Commun. (Penang, Malaysia), May 2007, pp. 622-626.
26 S. Chatterjee and T. K. Das, Multispurious harmonic suppression in compact coupled-line bandpass filters by trapezoidal corrugations, in Proc. IEEE Mediterr. Microw. Symp. (Istanbul, Turkey), Nov. 2018, pp. 149-152.
27 S. Chatterjee, T. K. Das, and B. Gupta, Harmonic suppression in in-line parallel-coupled microstrip bandpass filter by Minkowski fractals, in Proc. IEEE Mediterr. Microw. Symp. (MMS), (Marseille, France), Nov. 2017, pp. 1-4.
28 J. S. G. Hong and M. J. Lancaster, Microstrip Filters For RF/Microwave Applications, John Wiley & Sons, New York, NY, USA, 2004.
29 T. Gunel and S. Kent, Numerical modeling of microstrip radial stub, J. Microw. Power Electromagn. Energy 32 (1997), no. 4, 246-250.   DOI
30 C. H. Kim and K. Chang, Wide-stopband bandpass filters using asymmetric stepped-impedance resonators, IEEE Microw. Wirel. Compon. Lett. 23 (2013), no. 2, 69-71.   DOI
31 V. Sadhir and I. J. Bahl, Radial line structures for broadband microwave circuit applications, Microw. J. 34 (1991), 102.
32 S. A. Gohari, K. Mafinezhad, and M. Dousti, A novel analytical technique to omit the spurious passband in inductively coupled bandpass filter structures, AEU Int. J. Electron. Commun. 70 (2016), no. 1, 8-17.   DOI
33 J. T. Kuo and M. Jiang, Enhanced microstrip filter design with a uniform dielectric overlay for suppressing the second harmonic response, IEEE Microw. Wirel. Compon. Lett. 14 (2004), no. 9, 419-421.   DOI
34 J. Cui, C. Haojie, and Z. Renli, High selectivity slot-coupled bandpass filter using discriminating coupling and source-load coupling, Appl. Sci. 10 (2020), no. 19, doi: 10.3390/app10196807.   DOI
35 M. Taghizadeh, G. Moloudian, and A. Rouzbeh, Design and simulation of band-pass filter using micro-strip lines, Comput. Sci. Inf. Technol. 4 (2015), no. 11, 331-337.
36 A. Ghaderi, A. Golestanifar, and F. Shama, Microstrip bandpass filters using coupled feed lines for third and fourth generation communications, AEU Int. J. Electron. Commun. 86 (2018), 195-201.   DOI
37 A. Ghaderi, A. Golestanifar, and F. Shama, Design of a compact microstrip tunable dual-band bandpass filter, AEU Int. J. Electron. Commun. 82 (2017), 391-396.   DOI
38 F. Bagci et al., Compact balanced dual-band bandpass filter based on modified coupled-embedded resonators, IEEE Microw. Wirel. Compon. Lett. 27 (2016), no. 1, 31-33.   DOI
39 G. A. Hussain, Design of parallel coupled microstrip band-pass filter, Int. J. Comput. Technol. 15 (2016), 6768-6775.   DOI
40 S. K. Parui and S. Das, A new defected ground structure for different microstrip circuit applications, Radioengineering 16 (2007), no. 1, 16-22.
41 S. Tantiviwat, S. Z. Ibrahim, and M. S. Razalli, Design of quad-channel diplexer and tri-band bandpass filter based on multiple-mode stub-loaded resonators, Radioengineering 28 (2019), no. 1, 129-135.
42 T. Lopetegi et al., Microstrip "wiggly-line" bandpass filters with multispurious rejection, IEEE Microw. Wireless. Component. Lett. 14 (2004), no. 11, 531-533.   DOI
43 H. Kwon, H. Lim, and B. Kang, Design of 6-18 GHz wideband phase shifters using radial stubs, IEEE Microw. Wirel. Compon. Lett. 17 (2007), no. 3, 205-207.   DOI
44 X. Kai-Da, D. Li, and Y. Liu, High-selectivity wideband bandpass filter using simple coupled lines with multiple transmission poles and zeros, IEEE Microw. Wirel. Compon. Lett. 29 (2019), no. 2, 107-109.   DOI
45 D. Li, X. Kai-Da, and Z. Anxue, Single-ended and balanced bandpass filters using multiple pairs of coupled lines and stepped-impedance stubs, IEEE Access 8 (2020), 13541-13548.   DOI
46 G. L. Matthaei, L. Young, and M. J. Edward, Microwave Filters, Impedance-Matching Networks and Coupling Structures, McGraw-Hil, New York, NJ, USA, 1964.
47 J. T. Kuo, S. P. Chen, and M. Jiang, Parallel-coupled microstrip filters with over-coupled end stages for suppression of spurious responses, IEEE Microw. Wireless. Component. Lett. 13 (2003), no. 10, 440-442.   DOI
48 A. Griol et al., Microstrip multistage coupled ring bandpass filters using photonic bandgap structures for harmonic suppression, Electron. Lett. 39 (2003), no. 1, 68-70.   DOI
49 D. Ahn et al., A design of the low-pass filter using the novel microstrip defected ground structure, IEEE Trans. Microw. Theor. Tech. 49 (2001), no. 1, 86-93.   DOI
50 B. Mohammed, R. Mandry, and F. Aytouna, Square complementary split ring resonator (CSRR) low pass filter, in Proc. Int. Conf. Comput. Wirel. Commun. Syst. (Kenitra, Morocco), Apr. 2019, doi: 10.4108/eai.24-4-2019.2284083.   DOI
51 J. S. Park, J. S. Yun, and D. A. Ahn, Design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance, IEEE Trans. Microw. Theor. Tech. 50 (2002), no. 9, 2037-2043.   DOI
52 T. K. Das and S. Chatterjee, Spurious harmonic suppression in compact coupled-line bandpass filter with asymmetric perturbations, Int. J. Electron. 107 (2019), no. 4, 576-595.   DOI
53 G. Karimi, A. Salehi, and F. Javidan, Miniaturized (UWB) band pass filter using elliptical-ring multi-mode stub-loaded resonator (MM-SLR), Radioengineering 27 (2018), no. 3, 732-737.   DOI
54 G. N. Satish et al., A via-free left-handed transmission line with radial stubs, in Proc. Asia Pac. Microw. Conf. (Singapore, Singapore), Dec. 2009, pp. 2501-2504.
55 B. Zhang et al., Miniaturised wideband bandpass filter based on harmonic suppressed dual transmission lines, Electron. Lett. 52 (2016), no. 9, 734-736.   DOI