DOI QR코드

DOI QR Code

고분자 전해질 연료전지 및 수전해용 촉매층의 이오노머 바인더

Ionomer Binder in Catalyst Layer for Polymer Electrolyte Membrane Fuel Cell and Water Electrolysis: An Updated Review

  • 박종혁 (상명대학교 일반대학원 건설.환경.의생명공학과) ;
  • 마하무다아크테르 (상명대학교 일반대학원 건설.환경.의생명공학과) ;
  • 김범석 (상명대학교 공과대학 그린화학공학과) ;
  • 정다혜 (상명대학교 공과대학 그린화학공학과) ;
  • 이민영 (상명대학교 공과대학 그린화학공학과) ;
  • 신지윤 (상명대학교 공과대학 그린화학공학과) ;
  • 박진수 (상명대학교 일반대학원 건설.환경.의생명공학과)
  • Park, Jong-Hyeok (Department of Civil, Enviromental, and Biomedical Engineering, The Graduate School, Sangmyung University) ;
  • Akter, Mahamuda (Department of Civil, Enviromental, and Biomedical Engineering, The Graduate School, Sangmyung University) ;
  • Kim, Beom-Seok (Department of Green Engineering, College of Engineering, Sangmyung University) ;
  • Jeong, Dahye (Department of Green Engineering, College of Engineering, Sangmyung University) ;
  • Lee, Minyoung (Department of Green Engineering, College of Engineering, Sangmyung University) ;
  • Shin, Jiyun (Department of Green Engineering, College of Engineering, Sangmyung University) ;
  • Park, Jin-Soo (Department of Civil, Enviromental, and Biomedical Engineering, The Graduate School, Sangmyung University)
  • 투고 : 2022.11.18
  • 심사 : 2022.11.18
  • 발행 : 2022.11.30

초록

높은 에너지 밀도와 고순도 수소 생산의 측면에서 고분자 전해질 연료전지와 수전해가 주목받고 있다. 고분자 전해질 연료전지 및 수전해를 위한 촉매층은 귀금속 계열의 전기 촉매와 이오노머 바인더로 구성되어 있는 다공성 전극이다. 이 중 이오노머 바인더는 촉매층 내 이온 전도를 위한 3차원 네트워크 형성과 전극 반응에 필요한 또는 생성되는 물질들의 이동을 위한 기공 형성에 중요한 역할을 수행한다. 상용 과불소계 이오노머의 활용 측면에서 이오노머의 함량, 이오노머의 물성, 그리고 이를 분산시킬 분산 매체에 촉매층의 성능 및 내구성이 크게 달라진다. 현재까지 고분자 전해질 연료전지용 촉매층을 위한 이오노머의 활용 방법은 많은 연구가 진행되어왔으나 고분자 전해질 수전해 적용 방면에서는 촉매층 연구가 다소 미비한 실정이다. 본 총설에서는 현재까지 보고된 연료전지 측면에서의 이오노머 바인더 활용 연구결과를 요약하였으며, 수소 경제 시대의 가속화를 위해서 고분자 전해질 수전해 핵심요소 중 하나인 촉매층용 이오노머 바인더에 관한 연구에 유용한 정보를 제공하고자 한다.

Polymer electrolyte fuel cells and water electrolysis are attracting attention in terms of high energy density and high purity hydrogen production. The catalyst layer for the polymer electrolyte fuel cell and water electrolysis is a porous electrode composed of a precious metal-based electrocatalyst and an ionomer binder. Among them, the ionomer binder plays an important role in the formation of a three-dimensional network for ion conduction in the catalyst layer and the formation of pores for the movement of materials required or generated for the electrode reaction. In terms of the use of commercial perfluorinated ionomers, the content of the ionomer, the physical properties of the ionomer, and the type of the dispersing solvent system greatly determine the performance and durability of the catalyst layer. Until now, many studies have been reported on the method of using an ionomer for the catalyst layer for polymer electrolyte fuel cells. This review summarizes the research results on the use of ionomer binders in the fuel cell aspect reported so far, and aims to provide useful information for the research on the ionomer binder for the catalyst layer, which is one of the key elements of polymer electrolyte water electrolysis to accelerate the hydrogen economy era.

키워드

과제정보

본 연구는 대한민국 산업통상자원부로부터 재원을 부여받은 한국에너지기술평가원(KETEP)의 신재생에너지사업(제20213030040520호)과 2021년 환경부 지원 한국환경산업기술원 그린융합전문인력양성사업 일환으로 수행되었습니다.

참고문헌

  1. B. G. Pollet, The use of power ultrasound for the production of PEMFC and PEMWE catalysts and low-Pt loading and high-performing electrodes, Catalysts, 9(3), 246 (2019). https://doi.org/10.3390/catal9030246
  2. H. Y. Lee, H. K. Hwang, J. G. Lee, Y. Jeon, D.-H. Park, J. H. Kim, and Y.-G. Shul, Electrospun poly (ether sulfone) membranes impregnated with nafion for high-temperature polymer electrolyte membrane fuel cells, J. Korean Electrochem. Soc., 19(1), 9-13 (2016). https://doi.org/10.5229/JKES.2016.19.1.9
  3. D. Kim, K. Han, and D.-Y. Yoon, Effect of air flow rate on the performance of planar solid oxide fuel cell using CFD, J. Korean Electrochem. Soc., 18(4), 172-181 (2015). https://doi.org/10.5229/JKES.2015.18.4.172
  4. M. Kim, J. Ha, Y.-T. Kim, and J. Choi, Technology trends in stainless steel for water splitting application, J. Korean Electrochem. Soc., 24(2), 13-27 (2021).
  5. E. Kim, S. Yim, B. Bae, T. Yang, S. Park, and H. choi, Self-humidifying electrodes at low humidity for polymer electrolyte membrane fuel cells (PEMFCs), New Renew. Energy, 11(4), 46-51 (2015). https://doi.org/10.7849/ksnre.2015.12.11.4.46
  6. R. E. Rosli, A. B. Sulong, W. R. W. Daud, M. A. Zulkifley, T. Husaini, M. I. Rosli, E. H. Majlan, and M. A. Haque, A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system, Int. J. Hydrogen Energy, 42(14), 9293-9314 (2017). https://doi.org/10.1016/j.ijhydene.2016.06.211
  7. M.-S. Shin, C.-H. Song, M.-S. Kang, and J.-S. Park, Decal transfer method of hydrocarbon membranes for fabricating a membrane electrode assembly (MEA), New Renew. Energy, 13(3), 51-57 (2017). https://doi.org/10.7849/ksnre.2017.9.13.3.051
  8. H. S. Yoon, W. S. Jung, and M. H. Choe, Recent advances in Studies of the Activity of Non-precious Metal Catalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells, J. Korean Electrochem. Soc., 23(4), 90-96 (2020).
  9. Q. Feng, G. Liu, B. Wei, Z. Zhang, H. Li, and H. Wang, A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies, J. Power Sources, 366, 33-55 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.006
  10. H. Jung, N. Choi, S. Im, D. Yoon, and S. Moon, Performance degradation of mea with cation Contamination in polymer electrolyte membrane water electrolysis, Trans. Korean Hydrogen New Energy Soc., 28(4), 331-337 (2017).
  11. J. Kim and K. Lee, Research trend in electrocatalysts for anion exchange membrane water electrolysis, J. Korean Electrochem. Soc., 25(2), 69-80 (2022).
  12. J. G. Choi, K. Ham, S. Bong, and J. Lee, Phosphate-decorated Pt Nanoparticles as methanoltolerant oxygen reduction electrocatalyst for direct methanol fuel cells, J. Electrochem. Sci. Technol., 13(3), 354-361 (2022). https://doi.org/10.33961/jecst.2022.00115
  13. M. Uchida, Y. Aoyama, N. Eda, and A. Ohta, Investigation of the microstructure in the catalyst layer and effects of both perfluorosulfonate ionomer and PTFE?loaded carbon on the catalyst layer of polymer electrolyte fuel cells, J. Electrochem. Sci. Technol., 142(12), 4143 (1995). https://doi.org/10.1149/1.2048477
  14. S. Zhang, X. Z. Yuan, J. N. C. Hin, H. Wang, K. A. Friedrich, and M. Schulze, A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells, J. Power Sources, 194(2), 588-600 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.073
  15. D. You, Y. Lee, H. Cho, J.-H. Kim, C. Pak, G. Lee, K.-Y. Park, and J.-Y. Park, High performance membrane electrode assemblies by optimization of coating process and catalyst layer structure in direct methanol fuel cells, Int. J. Hydrogen Energy, 36(8), 5096-5103 (2011). https://doi.org/10.1016/j.ijhydene.2011.01.068
  16. D. Kim, S. Woo, S.-H. Park, N. Jung, and S.-D. Yim, Study on the CO tolerance of anode catalyst layers with ionomer content for polymer electrolyte membrane fuel cells, New Renew. Energy, 14(4), 38-45 (2018). https://doi.org/10.7849/ksnre.2018.12.14.4.038
  17. J.-H. Park, B.-S. Kim, and J.-S. Park, Effect of ionomer dispersions on the performance of catalyst layers in proton exchange membrane fuel cells, Electrochim. Acta, 424, 140680 (2022). https://doi.org/10.1016/j.electacta.2022.140680
  18. NafionTM Polymer Dispersions. Available online: https://www.nafion.com/en/products/polymer-dispersions (accessed on 1st November 2022).
  19. Aquivion? ion conducting polymers. Available online: https://www.solvay.com/en/brands/aquivion-ionconducting-polymers (accessed on 1st November 2022).
  20. 3MTM Ionomers. Available online: https://www.3m.com/3M/en_US/design-and-specialty-materialsus/?utm_medium=redirect&utm_source=vanityurl&utm_campaign=www.3M.com/Ionomers (accessed on 1st November 2022).
  21. PemionTM. Available online: https://ionomr.com/solutions/pemion/ (accessed on 1st November 2022).
  22. W. J. Cho, M. S. Lee, Y. S. Lee, Y. G. Yoon, and Y. W. Choi, A study on sulfonated fluorenyl poly (ether sulfone) s as catalyst binders for polymer electrolyte fuel cells, J. Korean Electrochem. Soc., 19(2), 39-44 (2016). https://doi.org/10.5229/JKES.2016.19.2.39
  23. D. Lee, and S. Hwang, Effect of loading and distributions of Nafion ionomer in the catalyst layer for PEMFCs, Int. J. Hydrogen Energy, 33(11), 2790-2794 (2008). https://doi.org/10.1016/j.ijhydene.2008.03.046
  24. H. Yu, J. M. Roller, W. E. Mustain, and R. Maric, Influence of the ionomer/carbon ratio for low-Pt loading catalyst layer prepared by reactive spray deposition technology, J. Power Sources, 283, 84-94 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.101
  25. H. Ishikawa, Y. Sugawara, G. Inoue, and M. Kawase, Effects of Pt and ionomer ratios on the structure of catalyst layer: A theoretical model for polymer electrolyte fuel cells, J. Power Sources, 374, 196-204 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.026
  26. J.-H. Park, M.-S. Shin, and J.-S. Park, Effect of dispersing solvents for ionomers on the performance and durability of catalyst layers in proton exchange membrane fuel cells, Electrochim. Acta, 391, 138971 (2021). https://doi.org/10.1016/j.electacta.2021.138971
  27. E. Yuk, H. Lee, N. Jung, D. Shin, and B. Bae, Electrochemical characteristics of electrode by various preparation methods for alkaline membrane fuel cell, J. Korean Electrochem. Soc., 24(4), 106-112 (2021).
  28. A. Kusoglu and A. Z. Weber, New insights into perfluorinated sulfonic-acid ionomers, Chem. rev., 117(3), 987-1104 (2017). https://doi.org/10.1021/acs.chemrev.6b00159
  29. E. Moukheiber, G. De Moor, L. Flandin, and C. Bas, Investigation of ionomer structure through its dependence on ion exchange capacity (IEC), J. Mem. Sci., 389, 294-304 (2012). https://doi.org/10.1016/j.memsci.2011.10.041
  30. D. Brandell, J. Karo, A. Liivat, and J. O. Thomas, Molecular dynamics studies of the NafionⓇ, DowⓇ and AciplexⓇ fuel-cell polymer membrane systems, J. Mol. Model., 13(10), 1039-1046 (2007). https://doi.org/10.1007/s00894-007-0230-7
  31. N. Yoshida, T. Ishisaki, A. Watakabe, and M. Yoshitake, Characterization of Flemion(R) membranes for PEFC, Electrochim. Acta, 43(24), 3749-3754 (1998). https://doi.org/10.1016/S0013-4686(98)00133-9
  32. M. Saito, N. Arimura, K. Hayamizu, and T. Okada, Mechanisms of ion and water transport in perfluorosulfonated ionomer membranes for fuel cells, J. Phys. Chem. B, 108(41), 16064-16070 (2004). https://doi.org/10.1021/jp0482565
  33. S. J. Hamrock, and M. A. Yandrasits, Proton exchange membranes for fuel cell applications, J. macromol. sci., Polym. rev., 46(3), 219-244 (2006). https://doi.org/10.1080/15583720600796474
  34. J. Li, M. Pan, and H. Tang, Understanding shortside-chain perfluorinated sulfonic acid and its application for high temperature polymer electrolyte membrane fuel cells, RSC adv., 4(8), 3944-3965 (2014). https://doi.org/10.1039/C3RA43735C
  35. Y. Garsany, R. W. Atkinson, M. B. Sassin, R. M. Hjelm, B. D. Gould, and K. E. Swider-Lyons, Improving PEMFC performance using short-sidechain low-equivalent-weight PFSA ionomer in the cathode catalyst layer, J. Electrochem. Soc., 165(5), F381 (2018). https://doi.org/10.1149/2.1361805jes
  36. M. Breitwieser, T. Bayer, A. , Buechler, R. Zengerle, S. M. Lyth, and S. Thiele, A fully spraycoated fuel cell membrane electrode assembly using Aquivion ionomer with a graphene oxide/cerium oxide interlayer, J. Power Sources, 351, 145-150 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.085
  37. S. Litster, and G. McLean, PEM fuel cell electrodes, J. Power Sources, 130(1-2), 61-76 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.055
  38. S.-Y. Ahn, Y.-C. Lee, H. Y. Ha, S.-A. Hong, and I.-H. Oh, Effect of the ionomers in the electrode on the performance of PEMFC under nonhumidifying conditions, Electrochim. Acta, 50(2-3), 673-676 (2004). https://doi.org/10.1016/j.electacta.2004.01.132
  39. T. Li, J. Shen, G. Chen, S. Guo, and G. Xie, Performance comparison of proton exchange membrane fuel cells with nafion and aquivion perfluorosulfonic acids with different equivalent weights as the electrode binders, ACS omega, 5(28), 17628-17636 (2020). https://doi.org/10.1021/acsomega.0c02110
  40. Y. Liu, C. Ji, W. Gu, D. R. Baker, J. Jorne, and H. A. Gasteiger, Proton conduction in PEM fuel cell cathodes: effects of electrode thickness and ionomer equivalent weight, J. Electrochem. Soc., 157(8), B1154 (2010). https://doi.org/10.1149/1.3435323
  41. H. Ren, Y. Teng, X. Meng, D. Fang, H. Huang, J. Geng, and Z. Shao, Ionomer network of catalyst layers for proton exchange membrane fuel cell, J. Power Sources, 506, 230186 (2021). https://doi.org/10.1016/j.jpowsour.2021.230186
  42. S. Shahgaldi, I. Alaefour, and X. Li, The impact of short side chain ionomer on polymer electrolyte membrane fuel cell performance and durability, Appl. Energy, 217, 295-302 (2018). https://doi.org/10.1016/j.apenergy.2018.02.154
  43. K.-H. Kim, K.-Y. Lee, H.-Y. Kim, E. Cho, S.-Y. Lee, T.-H. Lim, S. P. Yoon, I. C. Hwang, and J. H. Jang, The effects of NafionⓇ ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method, Int. J. Hydrogen Energy, 35(5), 2119-2126 (2010).
  44. Y. V. Yakovlev, Y. V. Lobko, M. Vorokhta, J. Novakova, M. Mazur, I. Matolinova, and V. Matolin, Ionomer content effect on charge and gas transport in the cathode catalyst layer of protonexchange membrane fuel cells, J. Power Sources, 490, 229531 (2021). https://doi.org/10.1016/j.jpowsour.2021.229531
  45. C.-H. Song, and J.-S. Park, Effect of dispersion solvents in catalyst inks on the performance and durability of catalyst layers in proton exchange membrane fuel cells, Energies, 12(3), 549 (2019). https://doi.org/10.3390/en12030549
  46. C. M. Johnston, K. S. Lee, T. Rockward, A. Labouriau, N. Mack, and Y. S. Kim, Impact of solvent on ionomer structure and fuel cell durability, ECS Trans., 25(1), 1617 (2009).
  47. C. Lei, F. Yang, N. Macauley, M. Spinetta, G. Purdy, J. Jankovic, D. A. Cullen, K. L. More, Y. S. Kim, and H. Xu, Impact of catalyst ink dispersing solvent on PEM fuel cell performance and durability, J. Electrochem. Soc., 168(4), 044517 (2021). https://doi.org/10.1149/1945-7111/abf2b0
  48. D.-C. Huang, P.-J. Yu, F.-J. Liu, S.-L. Huang, K.-L. Hsueh, Y.-C. Chen, C.-H. Wu, W.-C. Chang and F.-H. Tsau, Effect of dispersion solvent in catalyst ink on proton exchange membrane fuel cell performance, Int. J. Electrochem. Sci., 6(7), 2551-2565 (2011). https://doi.org/10.1016/S1452-3981(23)18202-2
  49. K. Ayers, High efficiency PEM water electrolysis: Enabled by advanced catalysts, membranes, and processes, Curr. Opin. Chem. Eng., 33, 100719 (2021). https://doi.org/10.1016/j.coche.2021.100719
  50. S. S. Kumar and V. Himabindu, Hydrogen production by PEM water electrolysis-A review, Mater. Sci. Energy Technol., 2(3), 442-454 (2019).
  51. A. S. Arico, S. Siracusano, N. Briguglio, V. Baglio, A. Di Blasi, and V. Antonucci, Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources, J. Appl. Electrochem., 43(2), 107-118 (2013). https://doi.org/10.1007/s10800-012-0490-5
  52. P. Trinke, G. P. Keeley, M. Carmo, B. Bensmann, and R. Hanke-Rauschenbach, Elucidating the effect of mass transport resistances on hydrogen crossover and cell performance in PEM water electrolyzers by varying the cathode ionomer content, J. Electrochem. Soc., 166(8), F465 (2019). https://doi.org/10.1149/2.0171908jes
  53. W. Xu, and K. Scott, The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance, Int. J. Hydrogen Energy, 35(21), 12029-12037 (2010). https://doi.org/10.1016/j.ijhydene.2010.08.055
  54. Y. Jang, C. Seol, S. M. Kim, and S. Jang, Investigation of the correlation effects of catalyst loading and ionomer content in an anode electrode on the performance of polymer electrode membrane water electrolysis, Int. J. Hydrogen Energy, 47(42), 18229-18239 (2022). https://doi.org/10.1016/j.ijhydene.2022.04.019