과제정보
본 연구는 대한민국 산업통상자원부로부터 재원을 부여받은 한국에너지기술평가원(KETEP)의 신재생에너지사업(제20213030040520호)과 2021년 환경부 지원 한국환경산업기술원 그린융합전문인력양성사업 일환으로 수행되었습니다.
참고문헌
- B. G. Pollet, The use of power ultrasound for the production of PEMFC and PEMWE catalysts and low-Pt loading and high-performing electrodes, Catalysts, 9(3), 246 (2019). https://doi.org/10.3390/catal9030246
- H. Y. Lee, H. K. Hwang, J. G. Lee, Y. Jeon, D.-H. Park, J. H. Kim, and Y.-G. Shul, Electrospun poly (ether sulfone) membranes impregnated with nafion for high-temperature polymer electrolyte membrane fuel cells, J. Korean Electrochem. Soc., 19(1), 9-13 (2016). https://doi.org/10.5229/JKES.2016.19.1.9
- D. Kim, K. Han, and D.-Y. Yoon, Effect of air flow rate on the performance of planar solid oxide fuel cell using CFD, J. Korean Electrochem. Soc., 18(4), 172-181 (2015). https://doi.org/10.5229/JKES.2015.18.4.172
- M. Kim, J. Ha, Y.-T. Kim, and J. Choi, Technology trends in stainless steel for water splitting application, J. Korean Electrochem. Soc., 24(2), 13-27 (2021).
- E. Kim, S. Yim, B. Bae, T. Yang, S. Park, and H. choi, Self-humidifying electrodes at low humidity for polymer electrolyte membrane fuel cells (PEMFCs), New Renew. Energy, 11(4), 46-51 (2015). https://doi.org/10.7849/ksnre.2015.12.11.4.46
- R. E. Rosli, A. B. Sulong, W. R. W. Daud, M. A. Zulkifley, T. Husaini, M. I. Rosli, E. H. Majlan, and M. A. Haque, A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system, Int. J. Hydrogen Energy, 42(14), 9293-9314 (2017). https://doi.org/10.1016/j.ijhydene.2016.06.211
- M.-S. Shin, C.-H. Song, M.-S. Kang, and J.-S. Park, Decal transfer method of hydrocarbon membranes for fabricating a membrane electrode assembly (MEA), New Renew. Energy, 13(3), 51-57 (2017). https://doi.org/10.7849/ksnre.2017.9.13.3.051
- H. S. Yoon, W. S. Jung, and M. H. Choe, Recent advances in Studies of the Activity of Non-precious Metal Catalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells, J. Korean Electrochem. Soc., 23(4), 90-96 (2020).
- Q. Feng, G. Liu, B. Wei, Z. Zhang, H. Li, and H. Wang, A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies, J. Power Sources, 366, 33-55 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.006
- H. Jung, N. Choi, S. Im, D. Yoon, and S. Moon, Performance degradation of mea with cation Contamination in polymer electrolyte membrane water electrolysis, Trans. Korean Hydrogen New Energy Soc., 28(4), 331-337 (2017).
- J. Kim and K. Lee, Research trend in electrocatalysts for anion exchange membrane water electrolysis, J. Korean Electrochem. Soc., 25(2), 69-80 (2022).
- J. G. Choi, K. Ham, S. Bong, and J. Lee, Phosphate-decorated Pt Nanoparticles as methanoltolerant oxygen reduction electrocatalyst for direct methanol fuel cells, J. Electrochem. Sci. Technol., 13(3), 354-361 (2022). https://doi.org/10.33961/jecst.2022.00115
- M. Uchida, Y. Aoyama, N. Eda, and A. Ohta, Investigation of the microstructure in the catalyst layer and effects of both perfluorosulfonate ionomer and PTFE?loaded carbon on the catalyst layer of polymer electrolyte fuel cells, J. Electrochem. Sci. Technol., 142(12), 4143 (1995). https://doi.org/10.1149/1.2048477
- S. Zhang, X. Z. Yuan, J. N. C. Hin, H. Wang, K. A. Friedrich, and M. Schulze, A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells, J. Power Sources, 194(2), 588-600 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.073
- D. You, Y. Lee, H. Cho, J.-H. Kim, C. Pak, G. Lee, K.-Y. Park, and J.-Y. Park, High performance membrane electrode assemblies by optimization of coating process and catalyst layer structure in direct methanol fuel cells, Int. J. Hydrogen Energy, 36(8), 5096-5103 (2011). https://doi.org/10.1016/j.ijhydene.2011.01.068
- D. Kim, S. Woo, S.-H. Park, N. Jung, and S.-D. Yim, Study on the CO tolerance of anode catalyst layers with ionomer content for polymer electrolyte membrane fuel cells, New Renew. Energy, 14(4), 38-45 (2018). https://doi.org/10.7849/ksnre.2018.12.14.4.038
- J.-H. Park, B.-S. Kim, and J.-S. Park, Effect of ionomer dispersions on the performance of catalyst layers in proton exchange membrane fuel cells, Electrochim. Acta, 424, 140680 (2022). https://doi.org/10.1016/j.electacta.2022.140680
- NafionTM Polymer Dispersions. Available online: https://www.nafion.com/en/products/polymer-dispersions (accessed on 1st November 2022).
- Aquivion? ion conducting polymers. Available online: https://www.solvay.com/en/brands/aquivion-ionconducting-polymers (accessed on 1st November 2022).
- 3MTM Ionomers. Available online: https://www.3m.com/3M/en_US/design-and-specialty-materialsus/?utm_medium=redirect&utm_source=vanityurl&utm_campaign=www.3M.com/Ionomers (accessed on 1st November 2022).
- PemionTM. Available online: https://ionomr.com/solutions/pemion/ (accessed on 1st November 2022).
- W. J. Cho, M. S. Lee, Y. S. Lee, Y. G. Yoon, and Y. W. Choi, A study on sulfonated fluorenyl poly (ether sulfone) s as catalyst binders for polymer electrolyte fuel cells, J. Korean Electrochem. Soc., 19(2), 39-44 (2016). https://doi.org/10.5229/JKES.2016.19.2.39
- D. Lee, and S. Hwang, Effect of loading and distributions of Nafion ionomer in the catalyst layer for PEMFCs, Int. J. Hydrogen Energy, 33(11), 2790-2794 (2008). https://doi.org/10.1016/j.ijhydene.2008.03.046
- H. Yu, J. M. Roller, W. E. Mustain, and R. Maric, Influence of the ionomer/carbon ratio for low-Pt loading catalyst layer prepared by reactive spray deposition technology, J. Power Sources, 283, 84-94 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.101
- H. Ishikawa, Y. Sugawara, G. Inoue, and M. Kawase, Effects of Pt and ionomer ratios on the structure of catalyst layer: A theoretical model for polymer electrolyte fuel cells, J. Power Sources, 374, 196-204 (2018). https://doi.org/10.1016/j.jpowsour.2017.11.026
- J.-H. Park, M.-S. Shin, and J.-S. Park, Effect of dispersing solvents for ionomers on the performance and durability of catalyst layers in proton exchange membrane fuel cells, Electrochim. Acta, 391, 138971 (2021). https://doi.org/10.1016/j.electacta.2021.138971
- E. Yuk, H. Lee, N. Jung, D. Shin, and B. Bae, Electrochemical characteristics of electrode by various preparation methods for alkaline membrane fuel cell, J. Korean Electrochem. Soc., 24(4), 106-112 (2021).
- A. Kusoglu and A. Z. Weber, New insights into perfluorinated sulfonic-acid ionomers, Chem. rev., 117(3), 987-1104 (2017). https://doi.org/10.1021/acs.chemrev.6b00159
- E. Moukheiber, G. De Moor, L. Flandin, and C. Bas, Investigation of ionomer structure through its dependence on ion exchange capacity (IEC), J. Mem. Sci., 389, 294-304 (2012). https://doi.org/10.1016/j.memsci.2011.10.041
- D. Brandell, J. Karo, A. Liivat, and J. O. Thomas, Molecular dynamics studies of the NafionⓇ, DowⓇ and AciplexⓇ fuel-cell polymer membrane systems, J. Mol. Model., 13(10), 1039-1046 (2007). https://doi.org/10.1007/s00894-007-0230-7
- N. Yoshida, T. Ishisaki, A. Watakabe, and M. Yoshitake, Characterization of Flemion(R) membranes for PEFC, Electrochim. Acta, 43(24), 3749-3754 (1998). https://doi.org/10.1016/S0013-4686(98)00133-9
- M. Saito, N. Arimura, K. Hayamizu, and T. Okada, Mechanisms of ion and water transport in perfluorosulfonated ionomer membranes for fuel cells, J. Phys. Chem. B, 108(41), 16064-16070 (2004). https://doi.org/10.1021/jp0482565
- S. J. Hamrock, and M. A. Yandrasits, Proton exchange membranes for fuel cell applications, J. macromol. sci., Polym. rev., 46(3), 219-244 (2006). https://doi.org/10.1080/15583720600796474
- J. Li, M. Pan, and H. Tang, Understanding shortside-chain perfluorinated sulfonic acid and its application for high temperature polymer electrolyte membrane fuel cells, RSC adv., 4(8), 3944-3965 (2014). https://doi.org/10.1039/C3RA43735C
- Y. Garsany, R. W. Atkinson, M. B. Sassin, R. M. Hjelm, B. D. Gould, and K. E. Swider-Lyons, Improving PEMFC performance using short-sidechain low-equivalent-weight PFSA ionomer in the cathode catalyst layer, J. Electrochem. Soc., 165(5), F381 (2018). https://doi.org/10.1149/2.1361805jes
- M. Breitwieser, T. Bayer, A. , Buechler, R. Zengerle, S. M. Lyth, and S. Thiele, A fully spraycoated fuel cell membrane electrode assembly using Aquivion ionomer with a graphene oxide/cerium oxide interlayer, J. Power Sources, 351, 145-150 (2017). https://doi.org/10.1016/j.jpowsour.2017.03.085
- S. Litster, and G. McLean, PEM fuel cell electrodes, J. Power Sources, 130(1-2), 61-76 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.055
- S.-Y. Ahn, Y.-C. Lee, H. Y. Ha, S.-A. Hong, and I.-H. Oh, Effect of the ionomers in the electrode on the performance of PEMFC under nonhumidifying conditions, Electrochim. Acta, 50(2-3), 673-676 (2004). https://doi.org/10.1016/j.electacta.2004.01.132
- T. Li, J. Shen, G. Chen, S. Guo, and G. Xie, Performance comparison of proton exchange membrane fuel cells with nafion and aquivion perfluorosulfonic acids with different equivalent weights as the electrode binders, ACS omega, 5(28), 17628-17636 (2020). https://doi.org/10.1021/acsomega.0c02110
- Y. Liu, C. Ji, W. Gu, D. R. Baker, J. Jorne, and H. A. Gasteiger, Proton conduction in PEM fuel cell cathodes: effects of electrode thickness and ionomer equivalent weight, J. Electrochem. Soc., 157(8), B1154 (2010). https://doi.org/10.1149/1.3435323
- H. Ren, Y. Teng, X. Meng, D. Fang, H. Huang, J. Geng, and Z. Shao, Ionomer network of catalyst layers for proton exchange membrane fuel cell, J. Power Sources, 506, 230186 (2021). https://doi.org/10.1016/j.jpowsour.2021.230186
- S. Shahgaldi, I. Alaefour, and X. Li, The impact of short side chain ionomer on polymer electrolyte membrane fuel cell performance and durability, Appl. Energy, 217, 295-302 (2018). https://doi.org/10.1016/j.apenergy.2018.02.154
- K.-H. Kim, K.-Y. Lee, H.-Y. Kim, E. Cho, S.-Y. Lee, T.-H. Lim, S. P. Yoon, I. C. Hwang, and J. H. Jang, The effects of NafionⓇ ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method, Int. J. Hydrogen Energy, 35(5), 2119-2126 (2010).
- Y. V. Yakovlev, Y. V. Lobko, M. Vorokhta, J. Novakova, M. Mazur, I. Matolinova, and V. Matolin, Ionomer content effect on charge and gas transport in the cathode catalyst layer of protonexchange membrane fuel cells, J. Power Sources, 490, 229531 (2021). https://doi.org/10.1016/j.jpowsour.2021.229531
- C.-H. Song, and J.-S. Park, Effect of dispersion solvents in catalyst inks on the performance and durability of catalyst layers in proton exchange membrane fuel cells, Energies, 12(3), 549 (2019). https://doi.org/10.3390/en12030549
- C. M. Johnston, K. S. Lee, T. Rockward, A. Labouriau, N. Mack, and Y. S. Kim, Impact of solvent on ionomer structure and fuel cell durability, ECS Trans., 25(1), 1617 (2009).
- C. Lei, F. Yang, N. Macauley, M. Spinetta, G. Purdy, J. Jankovic, D. A. Cullen, K. L. More, Y. S. Kim, and H. Xu, Impact of catalyst ink dispersing solvent on PEM fuel cell performance and durability, J. Electrochem. Soc., 168(4), 044517 (2021). https://doi.org/10.1149/1945-7111/abf2b0
- D.-C. Huang, P.-J. Yu, F.-J. Liu, S.-L. Huang, K.-L. Hsueh, Y.-C. Chen, C.-H. Wu, W.-C. Chang and F.-H. Tsau, Effect of dispersion solvent in catalyst ink on proton exchange membrane fuel cell performance, Int. J. Electrochem. Sci., 6(7), 2551-2565 (2011). https://doi.org/10.1016/S1452-3981(23)18202-2
- K. Ayers, High efficiency PEM water electrolysis: Enabled by advanced catalysts, membranes, and processes, Curr. Opin. Chem. Eng., 33, 100719 (2021). https://doi.org/10.1016/j.coche.2021.100719
- S. S. Kumar and V. Himabindu, Hydrogen production by PEM water electrolysis-A review, Mater. Sci. Energy Technol., 2(3), 442-454 (2019).
- A. S. Arico, S. Siracusano, N. Briguglio, V. Baglio, A. Di Blasi, and V. Antonucci, Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources, J. Appl. Electrochem., 43(2), 107-118 (2013). https://doi.org/10.1007/s10800-012-0490-5
- P. Trinke, G. P. Keeley, M. Carmo, B. Bensmann, and R. Hanke-Rauschenbach, Elucidating the effect of mass transport resistances on hydrogen crossover and cell performance in PEM water electrolyzers by varying the cathode ionomer content, J. Electrochem. Soc., 166(8), F465 (2019). https://doi.org/10.1149/2.0171908jes
- W. Xu, and K. Scott, The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance, Int. J. Hydrogen Energy, 35(21), 12029-12037 (2010). https://doi.org/10.1016/j.ijhydene.2010.08.055
- Y. Jang, C. Seol, S. M. Kim, and S. Jang, Investigation of the correlation effects of catalyst loading and ionomer content in an anode electrode on the performance of polymer electrode membrane water electrolysis, Int. J. Hydrogen Energy, 47(42), 18229-18239 (2022). https://doi.org/10.1016/j.ijhydene.2022.04.019