과제정보
이 연구는 2022년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원(20017477, 소재부품기술개발사업) 및 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원(P0002007, 2022년 산업혁신인재성장지원사업)을 받아 수행된 연구임.
참고문헌
- T.-H. Kim, J.-S. Park, S. K. Chang, S. Choi, J. H. Ryu, and H.-K. Song, The current move of lithium ion batteries towards the next phase, Adv. Energy Mater., 2(7), 860 (2012). https://doi.org/10.1002/aenm.201200028
- J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359 (2001). https://doi.org/10.1038/35104644
- G.-W. Lee, J.-H. Lee, J. H. Ryu, and S. M. Oh, Improvement of high-temperature performance of LiMn2O4 cathode by surface coating, J. Kor. Electrochem. Soc., 12(1), 81 (2009). https://doi.org/10.5229/JKES.2009.12.1.081
- D. H. Jang, Y. J. Shin, and S. M. Oh, Dissolution of spinel oxides and capacity losses in 4 V Li/LixMn2O4 cells, J. Electrochem. Soc., 143, 2204 (1996). https://doi.org/10.1149/1.1836981
- Y. Y. Xia, Y. H. Zhou, and M. Yoshio, Capacity fading on cycling of 4 V Li/LiMn2O4 cells, J. Electrochem. Soc., 144, 2593 (1997). https://doi.org/10.1149/1.1837870
- A. J. Smith, S. R. Smith, T. Byrne, J. C. Burns, and J. R. Dahn, Synergies in blended LiMn2O4 and Li[Ni1/3Mn1/3Co1/3]O2 positive electrodes, J. Electrochem. Soc., 159, A1696 (2012). https://doi.org/10.1149/2.056210jes
- D. Wu, H. Ren, Y. Guo, X. Zhang, Z. Zhang, and J. Li, Synergetic effects of LiNi1/3Co1/3Mn1/3O2-LiMn2O4 blended materials on lithium ionic transport for power performance, Ionics, 25, 595 (2019).
- S. B. Chikkannanavar, D. M. Bernardi, and L. Liu, A review of blended cathode materials for use in Li-ion batteries, J. Power Sources, 248, 91 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.052
- D. Ren, L. Lu, M. Ouyang, X. Feng, J. Li, and X. Han, Degradation identification of individual components in the LiyNi1/3Co1/3Mn1/3O2-LiyMn2O4 blended cathode for large format lithium ion battery, Energy Procedia, 105, 2698 (2017). https://doi.org/10.1016/j.egypro.2017.03.919
- C. Huang, N. P. Young, J. Zhang, H. J. Snaith, P. S. Grant, A two layer electrode structure for improved Li Ion diffusion and volumetric capacity in Li Ion batteries, Nano Energy, 31, 377 (2017). https://doi.org/10.1016/j.nanoen.2016.11.043
- M. Wood, J. Li, Z. Du, C. Daniel, A. R. Dunlop, B. J. Polzin, A. N. Jansen, G. K. Krumdick, and D. L. Wood III, Impact of secondary particle size and two-layer architectures on the high-rate performance of thick electrodes in lithium-ion battery pouch cells, J. Power Sources, 515, 230429 (2021). https://doi.org/10.1016/j.jpowsour.2021.230429
- H. Kang, Y. M. Kim, B. K. Park, J. H. Yang, S. Jeong, K. J. Kim, and J. Mun, Effective dual-layer fabrication solution for the lateral axial failure of the electrode in lithium-ion batteries, Int. J. Energy Res., in press. DOI: 10.1002/er.8694