DOI QR코드

DOI QR Code

The Functional Roles of Lactobacillus acidophilus in Different Physiological and Pathological Processes

  • Gao, Huijuan (Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University) ;
  • Li, Xin (Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University) ;
  • Chen, Xiatian (Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University) ;
  • Hai, Deng (Department of Chemistry, University of Aberdeen) ;
  • Wei, Chuang (Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University) ;
  • Zhang, Lei (Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University) ;
  • Li, Peifeng (Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University)
  • Received : 2022.05.23
  • Accepted : 2022.08.25
  • Published : 2022.10.28

Abstract

Probiotics are live microorganisms that can be consumed by humans in amounts sufficient to offer health-promoting effects. Owing to their various biological functions, probiotics are widely used in biological engineering, industry and agriculture, food safety, and the life and health fields. Lactobacillus acidophilus (L. acidophilus), an important human intestinal probiotic, was originally isolated from the human gastrointestinal tract and its functions have been widely studied ever since it was named in 1900. L. acidophilus has been found to play important roles in many aspects of human health. Due to its good resistance against acid and bile salts, it has broad application prospects in functional, edible probiotic preparations. In this review, we explore the basic characteristics and biological functions of L. acidophilus based on the research progress made thus far worldwide. Various problems to be solved regarding the applications of probiotic products and their future development are also discussed.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 91849209) and Shandong Provincial Natural Science Foundation, China (Grant No. ZR2020QH016).

References

  1. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. 2014. Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11: 506-514. https://doi.org/10.1038/nrgastro.2014.66
  2. Butel MJ. 2014. Probiotics, gut microbiota and health. Med. Mal. Infect. 44: 1-8. https://doi.org/10.1016/j.medmal.2013.10.002
  3. Saini R, Saini S, Sugandha. 2009. Probiotics: the health boosters. J. Cutan. Aesthet. Surg. 2: 112. https://doi.org/10.4103/0974-2077.58530
  4. Shah NP. 2007. Functional cultures and health benefits. Int. Dairy J. 17: 1262-1277. https://doi.org/10.1016/j.idairyj.2007.01.014
  5. Mital BK, Garg SK. 1995. Anticarcinogenic, hypocholesterolemic, and antagonistic activities of Lactobacillus acidophilus. Crit. Rev. Microbiol. 21: 175-214. https://doi.org/10.3109/10408419509113540
  6. Saxelin M, Tynkkynen S, Mattila-Sandholm T, de Vos WM. 2005. Probiotic and other functional microbes: from markets to mechanisms. Curr. Opin. Biotechnol. 16: 204-211. https://doi.org/10.1016/j.copbio.2005.02.003
  7. Bull M, Plummer S, Marchesi J, Mahenthiralingam E. 2013. The life history of Lactobacillus acidophilus as a probiotic: a tale of revisionary taxonomy, misidentification and commercial success. FEMS Microbiol. Lett. 349: 77-87. https://doi.org/10.1111/1574-6968.12293
  8. Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O, et al. 2005. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc. Natl. Acad. Sci. USA 102: 3906-3912. https://doi.org/10.1073/pnas.0409188102
  9. Azcarate-Peril MA, Altermann E, Hoover-Fitzula RL, Cano RJ, Klaenhammer TR. 2004. Identification and inactivation of genetic loci involved with Lactobacillus acidophilus acid tolerance. Appl. Environ. Microbiol. 70: 5315-5322. https://doi.org/10.1128/AEM.70.9.5315-5322.2004
  10. Claesson MJ, van Sinderen D, O'Toole PW. 2007. The genus Lactobacillus--a genomic basis for understanding its diversity. FEMS Microbiol. Lett. 269: 22-28. https://doi.org/10.1111/j.1574-6968.2006.00596.x
  11. Azcarate-Peril MA, McAuliffe O, Altermann E, Lick S, Russell WM, Klaenhammer TR. 2005. Microarray analysis of a twocomponent regulatory system involved in acid resistance and proteolytic activity in Lactobacillus acidophilus. Appl. Environ. Microbiol. 71: 5794-5804. https://doi.org/10.1128/AEM.71.10.5794-5804.2005
  12. Pfeiler EA, Klaenhammer TR. 2009. Role of transporter proteins in bile tolerance of Lactobacillus acidophilus. Appl. Environ. Microbiol. 75: 6013-6016. https://doi.org/10.1128/AEM.00495-09
  13. Khaleghi M, Kermanshahi RK, Yaghoobi MM, Zarkesh-Esfahani SH, Baghizadeh A. 2010. Assessment of bile salt effects on s-layer production, slp gene expression and some physicochemical properties of Lactobacillus acidophilus ATCC 4356. J. Microbiol. Biotechnol. 20: 749-756.
  14. Buck BL, Altermann E, Svingerud T, Klaenhammer TR. 2005. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. 71: 8344-8351. https://doi.org/10.1128/AEM.71.12.8344-8351.2005
  15. Sanders ME, Klaenhammer TR. 2001. Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J. Dairy Sci. 84: 319-331. https://doi.org/10.3168/jds.S0022-0302(01)74481-5
  16. Sanders ME, Walker DC, Walker KM, Aoyama K, Klaenhammer TR. 1996. Performance of commercial cultures in fluid milk applications. J. Dairy Sci. 79: 943-955. https://doi.org/10.3168/jds.S0022-0302(96)76445-7
  17. Shah NP. 2000. Probiotic bacteria: selective enumeration and survival in dairy foods. J. Dairy Sci. 83: 894-907. https://doi.org/10.3168/jds.S0022-0302(00)74953-8
  18. Bron PA, van Baarlen P, Kleerebezem M. 2011. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat. Rev. Microbiol. 10: 66-78.
  19. Gilliland SE. 1989. Acidophilus milk products: a review of potential benefits to consumers. J. Dairy Sci. 72: 2483-2494. https://doi.org/10.3168/jds.S0022-0302(89)79389-9
  20. Wang KY, Li SN, Liu CS, Perng DS, Su YC, Wu DC, et al. 2004. Effects of ingesting Lactobacillus- and Bifidobacterium-containing yogurt in subjects with colonized Helicobacter pylori. Am. J. Clin. Nutr. 80: 737-741.
  21. Tegegne BA, Kebede B. 2022. Probiotics, their prophylactic and therapeutic applications in human health development: a review of the literature. Heliyon 8: e09725. https://doi.org/10.1016/j.heliyon.2022.e09725
  22. Reid G, Jass J, Sebulsky MT, McCormick JK. 2003. Potential uses of probiotics in clinical practice. Clin. Microbiol. Rev. 16: 658-672. https://doi.org/10.1128/CMR.16.4.658-672.2003
  23. Bennett A, Eley KG. 1976. Intestinal pH and propulsion: an explanation of diarrhoea in lactase deficiency and laxation by lactulose. J. Pharm. Pharmacol. 28: 192-195. https://doi.org/10.1111/j.2042-7158.1976.tb04129.x
  24. Goldin BR, Gorbach SL. 1980. Effect of Lactobacillus acidophilus dietary supplements on 1,2-dimethylhydrazine dihydrochlorideinduced intestinal cancer in rats. J. Natl. Cancer Inst. 64: 263-265. https://doi.org/10.1093/jnci/64.2.263
  25. Goldin BR, Gorbach SL. 1984. The effect of milk and lactobacillus feeding on human intestinal bacterial enzyme activity. Am. J. Clin. Nutr. 39: 756-761. https://doi.org/10.1093/ajcn/39.5.756
  26. Chang JH, Shim YY, Cha SK, Reaney MJT, Chee KM. 2012. Effect of Lactobacillus acidophilus KFRI342 on the development of chemically induced precancerous growths in the rat colon. J. Med. Microbiol. 61: 361-368. https://doi.org/10.1099/jmm.0.035154-0
  27. Singh VP, Sharma J, Babu S, Rizwanulla, Singla A. 2013. Role of probiotics in health and disease: a review. J. Pak Med. Assoc. 63: 253-257.
  28. Kopp-Hoolihan L. 2001. Prophylactic and therapeutic uses of probiotics: a review. J. Am. Diet Assoc. 101: 229-238; quiz 239-241. https://doi.org/10.1016/S0002-8223(01)00060-8
  29. Oh JK, Kim YR, Lee B, Choi YM, Kim SH. 2021. Prevention of cholesterol gallstone formation by Lactobacillus acidophilus ATCC 43121 and Lactobacillus fermentum MF27 in lithogenic diet-induced mice. Food Sci. Anim. Resour. 41: 343-352. https://doi.org/10.5851/kosfa.2020.e93
  30. Lee NY, Shin MJ, Youn GS, Yoon SJ, Choi YR, Kim HS, et al. 2021. Lactobacillus attenuates progression of nonalcoholic fatty liver disease by lowering cholesterol and steatosis. Clin. Mol. Hepatol. 27: 110-124. https://doi.org/10.3350/cmh.2020.0125
  31. Huang Y, Wang J, Quan G, Wang X, Yang L, Zhong L. 2014. Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice. Appl. Environ. Microbiol. 80: 7496-7504. https://doi.org/10.1128/AEM.02926-14
  32. Wang L, Zhou B, Zhou X, Wang Y, Wang H, Jia S, et al. 2019. Combined lowering effects of rosuvastatin and L. acidophilus on cholesterol levels in rat. J. Microbiol. Biotechnol. 29: 473-481. https://doi.org/10.4014/jmb.1806.06004
  33. Lloyd-Jones DM. 2010. Cardiovascular risk prediction: basic concepts, current status, and future directions. Circulation 121: 1768-1777. https://doi.org/10.1161/CIRCULATIONAHA.109.849166
  34. Tan WQ, Wang JX, Lin ZQ, Li YR, Lin Y, Li PF. 2008. Novel cardiac apoptotic pathway: the dephosphorylation of apoptosis repressor with caspase recruitment domain by calcineurin. Circulation 118: 2268-2276. https://doi.org/10.1161/CIRCULATIONAHA.107.750869
  35. Ding SL, Wang JX, Jiao JQ, Tu X, Wang Q, Liu F, et al. 2013. A pre-microRNA-149 (miR-149) genetic variation affects miR-149 maturation and its ability to regulate the Puma protein in apoptosis. J. Biol. Chem. 288: 26865-26877. https://doi.org/10.1074/jbc.M112.440453
  36. Xue S, Liu D, Zhu W, Su Z, Zhang L, Zhou C, et al. 2019. Circulating MiR-17-5p, MiR-126-5p and MiR-145-3p are novel biomarkers for diagnosis of acute myocardial infarction. Front. Physiol. 10: 123.
  37. Mann GV. 1974. Studies of a surfactant and cholesteremia in the Maasai. Am. J. Clin. Nutr. 27: 464-469. https://doi.org/10.1093/ajcn/27.5.464
  38. Harrison VC, Peat G. 1975. Serum cholesterol and bowel flora in the newborn. Am. J. Clin. Nutr. 28: 1351-1355. https://doi.org/10.1093/ajcn/28.12.1351
  39. Stepankova R, Tonar Z, Bartova J, Nedorost L, Rossman P, Poledne R, et al. 2010. Absence of microbiota (germ-free conditions) accelerates the atherosclerosis in ApoE-deficient mice fed standard low cholesterol diet. J. Atheroscler. Thromb. 17: 796-804. https://doi.org/10.5551/jat.3285
  40. Gilliland SE, Walker DK. 1990. Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. J. Dairy Sci. 73: 905-911. https://doi.org/10.3168/jds.S0022-0302(90)78747-4
  41. Gilliland SE, Nelson CR, Maxwell C. 1985. Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microbiol. 49: 377-381. https://doi.org/10.1128/aem.49.2.377-381.1985
  42. Park YH, Kim JG, Shin YW, Kim SH, Whang KY. 2007. Effect of dietary inclusion of Lactobacillus acidophilus ATCC 43121 on cholesterol metabolism in rats. J. Microbiol. Biotechnol. 17: 655-662.
  43. Park YH, Kim JG, Shin YW, Kim HS, Kim YJ, Chun T, et al. 2008. Effects of Lactobacillus acidophilus 43121 and a mixture of Lactobacillus casei and Bifidobacterium longum on the serum cholesterol level and fecal sterol excretion in hypercholesterolemiainduced pigs. Biosci. Biotechnol. Biochem. 72: 595-600. https://doi.org/10.1271/bbb.70581
  44. Song M, Park S, Lee H, Min B, Jung S, Park S, et al. 2015. Effect of Lactobacillus acidophilus NS1 on plasma cholesterol levels in dietinduced obese mice. J. Dairy Sci. 98: 1492-1501. https://doi.org/10.3168/jds.2014-8586
  45. Huang Y, Wang J, Cheng Y, Zheng Y. 2010. The hypocholesterolaemic effects of Lactobacillus acidophilus American type culture collection 4356 in rats are mediated by the down-regulation of Niemann-Pick C1-like 1. Br. J. Nutr. 104: 807-812. https://doi.org/10.1017/S0007114510001285
  46. Chen L, Liu W, Li Y, Luo S, Liu Q, Zhong Y, et al. 2013. Lactobacillus acidophilus ATCC 4356 attenuates the atherosclerotic progression through modulation of oxidative stress and inflammatory process. Int. Immunopharmacol. 17: 108-115. https://doi.org/10.1016/j.intimp.2013.05.018
  47. Lightfoot YL, Selle K, Yang T, Goh YJ, Sahay B, Zadeh M, et al. 2015. SIGNR3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis. EMBO J. 34: 881-895. https://doi.org/10.15252/embj.201490296
  48. Chandhni PR, Pradhan D, Sowmya K, Gupta S, Kadyan S, Choudhary R, et al. 2021. Ameliorative effect of surface proteins of probiotic Lactobacilli in colitis mouse models. Front. Microbiol. 12: 679773. https://doi.org/10.3389/fmicb.2021.679773
  49. Wu Z, Pan DD, Guo Y, Zeng X. 2013. Structure and anti-inflammatory capacity of peptidoglycan from Lactobacillus acidophilus in RAW-264.7 cells. Carbohydr. Polym. 96: 466-473. https://doi.org/10.1016/j.carbpol.2013.04.028
  50. Moshiri M, Dallal MMS, Rezaei F, Douraghi M, Sharifi L, Noroozbabaei Z, et al. 2017. The effect of Lactobacillus acidophilus PTCC 1643 on cultured intestinal epithelial cells infected with Salmonella enterica serovar enteritidis. Osong. Public Health Res. Perspect 8: 54-60. https://doi.org/10.24171/j.phrp.2017.8.1.07
  51. Simenhoff ML, Dunn SR, Zollner GP, Fitzpatrick ME, Emery SM, Sandine WE, et al. 1996. Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Miner. Electrolyte Metab. 22: 92-96.
  52. Dunn SR, Simenhoff ML, Ahmed KE, Gaughan WJ, Eltayeb BO, Fitzpatrick MED, et al. 1998. Effect of oral administration of freezedried Lactobacillus acidophilus on small bowel bacterial overgrowth in patients with end stage kidney disease: Reducing uremic toxins and improving nutrition. Int. Dairy J. 8: 545-553. https://doi.org/10.1016/S0958-6946(98)00081-8
  53. Shah N. 1993. Effectiveness of dairy-products in alleviation of lactose-intolerance. Food Aust. 45: 268-271.
  54. Lin MY, Yen CL, Chen SH. 1998. Management of lactose maldigestion by consuming milk containing lactobacilli. Dig. Dis. Sci. 43: 133-137. https://doi.org/10.1023/A:1018840507952
  55. Mustapha A, Jiang T, Savaiano DA. 1997. Improvement of lactose digestion by humans following ingestion of unfermented acidophilus milk: influence of bile sensitivity, lactose transport, and acid tolerance of Lactobacillus acidophilus.J. Dairy Sci. 80: 1537-1545. https://doi.org/10.3168/jds.S0022-0302(97)76083-1
  56. Kim HS, Gilliland SE. 1983. Lactobacillus acidophilus as a dietary adjunct for milk to aid lactose digestion in humans. J. Dairy Sci. 66: 959-966. https://doi.org/10.3168/jds.S0022-0302(83)81887-6
  57. Montes RG, Bayless TM, Saavedra JM, Perman JA. 1995. Effect of milks inoculated with Lactobacillus acidophilus or a yogurt starter culture in lactose-maldigesting children. J. Dairy Sci. 78: 1657-1664. https://doi.org/10.3168/jds.S0022-0302(95)76790-X
  58. Pakdaman MN, Udani JK, Molina JP, Shahani M. 2016. The effects of the DDS-1 strain of lactobacillus on symptomatic relief for lactose intolerance - a randomized, double-blind, placebo-controlled, crossover clinical trial. Nutr. J. 15: 56.
  59. Newcomer AD, Park HS, O'Brien PC, McGill DB. 1983. Response of patients with irritable bowel syndrome and lactase deficiency using unfermented acidophilus milk. Am. J. Clin. Nutr. 38: 257-263. https://doi.org/10.1093/ajcn/38.2.257
  60. McDonough FE, Hitchins AD, Wong NP, Wells P, Bodwell CE. 1987. Modification of sweet acidophilus milk to improve utilization by lactose-intolerant persons. Am. J. Clin. Nutr. 45: 570-574. https://doi.org/10.1093/ajcn/45.3.570
  61. Payne DL, Welsh JD, Manion CV, Tsegaye A, Herd LD. 1981. Effectiveness of milk products in dietary management of lactose malabsorption. Am. J. Clin. Nutr. 34: 2711-2715. https://doi.org/10.1093/ajcn/34.12.2711
  62. El-Deeb NM, Yassin AM, Al-Madboly LA, El-Hawiet A. 2018. A novel purified Lactobacillus acidophilus 20079 exopolysaccharide, LA-EPS-20079, molecularly regulates both apoptotic and NF-kappaB inflammatory pathways in human colon cancer. Microb. Cell Fact. 17: 29. https://doi.org/10.1186/s12934-018-0877-z
  63. Khedr OMS, El-Sonbaty SM, Moawed FSM, Kandil EI, Abdel-Maksoud BE. 2021. Lactobacillus acidophilus ATCC 4356 exopolysaccharides suppresses mediators of inflammation through the inhibition of TLR2/STAT-3/P38-MAPK pathway in DENinduced hepatocarcinogenesis in rats. Nutr. Cancer 74: 1037-1047.
  64. Wagner RD, Pierson C, Warner T, Dohnalek M, Farmer J, Roberts L, et al. 1997. Biotherapeutic effects of probiotic bacteria on candidiasis in immunodeficient mice. Infect. Immun. 65: 4165-4172. https://doi.org/10.1128/iai.65.10.4165-4172.1997
  65. Tejada-Simon MV, Lee JH, Ustunol Z, Pestka JJ. 1999. Ingestion of yogurt containing Lactobacillus acidophilus and Bifidobacterium to potentiate immunoglobulin A responses to cholera toxin in mice. J. Dairy Sci. 82: 649-660. https://doi.org/10.3168/jds.S0022-0302(99)75281-1
  66. Yang Y, Song M, Liu Y, Liu H, Sun L, Peng Y, et al. 2016. Renoprotective approaches and strategies in acute kidney injury. Pharmacol. Ther. 163: 58-73. https://doi.org/10.1016/j.pharmthera.2016.03.015
  67. Zhang P, Han X, Zhang X, Zhu X. 2021. Lactobacillus acidophilus ATCC 4356 alleviates renal ischemia-reperfusion injury through antioxidant stress and anti-inflammatory responses and improves intestinal microbial distribution. Front. Nutr. 8: 667695. https://doi.org/10.3389/fnut.2021.667695
  68. Sadeghzadeh J, Vakili A, Sameni HR, Shadnoush M, Bandegi AR, Zahedi Khorasani M. 2017. The effect of oral consumption of probiotics in prevention of heart injury in a rat myocardial infarction model: A histopathological, hemodynamic and biochemical evaluation. Iran Biomed J. 21: 174-181. https://doi.org/10.18869/acadpub.ibj.21.3.174
  69. Reid G. 2000. In vitro testing of Lactobacillus acidophilus NCFM (TM) as a possible probiotic for the urogenital tract. Int. Dairy J. 10: 415-419. https://doi.org/10.1016/S0958-6946(00)00059-5
  70. Amdekar S, Singh V, Kumar A, Sharma P, Singh R. 2013. Lactobacillus casei and Lactobacillus acidophilus regulate inflammatory pathway and improve antioxidant status in collagen-induced arthritic rats. J. Interferon Cytokine Res. 33: 1-8. https://doi.org/10.1089/jir.2012.0034
  71. Paul AK, Paul A, Jahan R, Jannat K, Bondhon TA, Hasan A, et al. 2021. Probiotics and amelioration of rheumatoid arthritis: Significant roles of Lactobacillus casei and Lactobacillus acidophilus. Microorganisms 9: 1070. https://doi.org/10.3390/microorganisms9051070
  72. Holzapfel WH, Schillinger U. 2002. Introduction to pre- and probiotics. Food Res. Int. 35: 109-116. https://doi.org/10.1016/S0963-9969(01)00171-5
  73. Marteau P, Boutron-Ruault MC. 2002. Nutritional advantages of probiotics and prebiotics. Br. J. Nutr. 87 Suppl 2: S153-157. https://doi.org/10.1079/BJN2002531