Browse > Article
http://dx.doi.org/10.4014/jmb.2205.05041

The Functional Roles of Lactobacillus acidophilus in Different Physiological and Pathological Processes  

Gao, Huijuan (Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University)
Li, Xin (Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University)
Chen, Xiatian (Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University)
Hai, Deng (Department of Chemistry, University of Aberdeen)
Wei, Chuang (Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University)
Zhang, Lei (Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University)
Li, Peifeng (Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.10, 2022 , pp. 1226-1233 More about this Journal
Abstract
Probiotics are live microorganisms that can be consumed by humans in amounts sufficient to offer health-promoting effects. Owing to their various biological functions, probiotics are widely used in biological engineering, industry and agriculture, food safety, and the life and health fields. Lactobacillus acidophilus (L. acidophilus), an important human intestinal probiotic, was originally isolated from the human gastrointestinal tract and its functions have been widely studied ever since it was named in 1900. L. acidophilus has been found to play important roles in many aspects of human health. Due to its good resistance against acid and bile salts, it has broad application prospects in functional, edible probiotic preparations. In this review, we explore the basic characteristics and biological functions of L. acidophilus based on the research progress made thus far worldwide. Various problems to be solved regarding the applications of probiotic products and their future development are also discussed.
Keywords
Probiotics; Lactobacillus acidophilus; intestinal flora; cholesterol; immunity;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kopp-Hoolihan L. 2001. Prophylactic and therapeutic uses of probiotics: a review. J. Am. Diet Assoc. 101: 229-238; quiz 239-241.   DOI
2 Huang Y, Wang J, Quan G, Wang X, Yang L, Zhong L. 2014. Lactobacillus acidophilus ATCC 4356 prevents atherosclerosis via inhibition of intestinal cholesterol absorption in apolipoprotein E-knockout mice. Appl. Environ. Microbiol. 80: 7496-7504.   DOI
3 Tan WQ, Wang JX, Lin ZQ, Li YR, Lin Y, Li PF. 2008. Novel cardiac apoptotic pathway: the dephosphorylation of apoptosis repressor with caspase recruitment domain by calcineurin. Circulation 118: 2268-2276.   DOI
4 Holzapfel WH, Schillinger U. 2002. Introduction to pre- and probiotics. Food Res. Int. 35: 109-116.   DOI
5 Dunn SR, Simenhoff ML, Ahmed KE, Gaughan WJ, Eltayeb BO, Fitzpatrick MED, et al. 1998. Effect of oral administration of freezedried Lactobacillus acidophilus on small bowel bacterial overgrowth in patients with end stage kidney disease: Reducing uremic toxins and improving nutrition. Int. Dairy J. 8: 545-553.   DOI
6 Lightfoot YL, Selle K, Yang T, Goh YJ, Sahay B, Zadeh M, et al. 2015. SIGNR3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis. EMBO J. 34: 881-895.   DOI
7 Chandhni PR, Pradhan D, Sowmya K, Gupta S, Kadyan S, Choudhary R, et al. 2021. Ameliorative effect of surface proteins of probiotic Lactobacilli in colitis mouse models. Front. Microbiol. 12: 679773.   DOI
8 Wu Z, Pan DD, Guo Y, Zeng X. 2013. Structure and anti-inflammatory capacity of peptidoglycan from Lactobacillus acidophilus in RAW-264.7 cells. Carbohydr. Polym. 96: 466-473.   DOI
9 Moshiri M, Dallal MMS, Rezaei F, Douraghi M, Sharifi L, Noroozbabaei Z, et al. 2017. The effect of Lactobacillus acidophilus PTCC 1643 on cultured intestinal epithelial cells infected with Salmonella enterica serovar enteritidis. Osong. Public Health Res. Perspect 8: 54-60.   DOI
10 Simenhoff ML, Dunn SR, Zollner GP, Fitzpatrick ME, Emery SM, Sandine WE, et al. 1996. Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Miner. Electrolyte Metab. 22: 92-96.
11 Mustapha A, Jiang T, Savaiano DA. 1997. Improvement of lactose digestion by humans following ingestion of unfermented acidophilus milk: influence of bile sensitivity, lactose transport, and acid tolerance of Lactobacillus acidophilus.J. Dairy Sci. 80: 1537-1545.   DOI
12 Chen L, Liu W, Li Y, Luo S, Liu Q, Zhong Y, et al. 2013. Lactobacillus acidophilus ATCC 4356 attenuates the atherosclerotic progression through modulation of oxidative stress and inflammatory process. Int. Immunopharmacol. 17: 108-115.   DOI
13 Lloyd-Jones DM. 2010. Cardiovascular risk prediction: basic concepts, current status, and future directions. Circulation 121: 1768-1777.   DOI
14 Chang JH, Shim YY, Cha SK, Reaney MJT, Chee KM. 2012. Effect of Lactobacillus acidophilus KFRI342 on the development of chemically induced precancerous growths in the rat colon. J. Med. Microbiol. 61: 361-368.   DOI
15 Singh VP, Sharma J, Babu S, Rizwanulla, Singla A. 2013. Role of probiotics in health and disease: a review. J. Pak Med. Assoc. 63: 253-257.
16 Oh JK, Kim YR, Lee B, Choi YM, Kim SH. 2021. Prevention of cholesterol gallstone formation by Lactobacillus acidophilus ATCC 43121 and Lactobacillus fermentum MF27 in lithogenic diet-induced mice. Food Sci. Anim. Resour. 41: 343-352.   DOI
17 Lee NY, Shin MJ, Youn GS, Yoon SJ, Choi YR, Kim HS, et al. 2021. Lactobacillus attenuates progression of nonalcoholic fatty liver disease by lowering cholesterol and steatosis. Clin. Mol. Hepatol. 27: 110-124.   DOI
18 Wang L, Zhou B, Zhou X, Wang Y, Wang H, Jia S, et al. 2019. Combined lowering effects of rosuvastatin and L. acidophilus on cholesterol levels in rat. J. Microbiol. Biotechnol. 29: 473-481.   DOI
19 Ding SL, Wang JX, Jiao JQ, Tu X, Wang Q, Liu F, et al. 2013. A pre-microRNA-149 (miR-149) genetic variation affects miR-149 maturation and its ability to regulate the Puma protein in apoptosis. J. Biol. Chem. 288: 26865-26877.   DOI
20 Xue S, Liu D, Zhu W, Su Z, Zhang L, Zhou C, et al. 2019. Circulating MiR-17-5p, MiR-126-5p and MiR-145-3p are novel biomarkers for diagnosis of acute myocardial infarction. Front. Physiol. 10: 123.
21 Mann GV. 1974. Studies of a surfactant and cholesteremia in the Maasai. Am. J. Clin. Nutr. 27: 464-469.   DOI
22 Pfeiler EA, Klaenhammer TR. 2009. Role of transporter proteins in bile tolerance of Lactobacillus acidophilus. Appl. Environ. Microbiol. 75: 6013-6016.   DOI
23 Pakdaman MN, Udani JK, Molina JP, Shahani M. 2016. The effects of the DDS-1 strain of lactobacillus on symptomatic relief for lactose intolerance - a randomized, double-blind, placebo-controlled, crossover clinical trial. Nutr. J. 15: 56.
24 Payne DL, Welsh JD, Manion CV, Tsegaye A, Herd LD. 1981. Effectiveness of milk products in dietary management of lactose malabsorption. Am. J. Clin. Nutr. 34: 2711-2715.   DOI
25 Khedr OMS, El-Sonbaty SM, Moawed FSM, Kandil EI, Abdel-Maksoud BE. 2021. Lactobacillus acidophilus ATCC 4356 exopolysaccharides suppresses mediators of inflammation through the inhibition of TLR2/STAT-3/P38-MAPK pathway in DENinduced hepatocarcinogenesis in rats. Nutr. Cancer 74: 1037-1047.
26 Marteau P, Boutron-Ruault MC. 2002. Nutritional advantages of probiotics and prebiotics. Br. J. Nutr. 87 Suppl 2: S153-157.   DOI
27 Saini R, Saini S, Sugandha. 2009. Probiotics: the health boosters. J. Cutan. Aesthet. Surg. 2: 112.   DOI
28 Saxelin M, Tynkkynen S, Mattila-Sandholm T, de Vos WM. 2005. Probiotic and other functional microbes: from markets to mechanisms. Curr. Opin. Biotechnol. 16: 204-211.   DOI
29 Azcarate-Peril MA, Altermann E, Hoover-Fitzula RL, Cano RJ, Klaenhammer TR. 2004. Identification and inactivation of genetic loci involved with Lactobacillus acidophilus acid tolerance. Appl. Environ. Microbiol. 70: 5315-5322.   DOI
30 Sanders ME, Klaenhammer TR. 2001. Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J. Dairy Sci. 84: 319-331.   DOI
31 Harrison VC, Peat G. 1975. Serum cholesterol and bowel flora in the newborn. Am. J. Clin. Nutr. 28: 1351-1355.   DOI
32 Bron PA, van Baarlen P, Kleerebezem M. 2011. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat. Rev. Microbiol. 10: 66-78.
33 Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. 2014. Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11: 506-514.   DOI
34 Butel MJ. 2014. Probiotics, gut microbiota and health. Med. Mal. Infect. 44: 1-8.   DOI
35 Stepankova R, Tonar Z, Bartova J, Nedorost L, Rossman P, Poledne R, et al. 2010. Absence of microbiota (germ-free conditions) accelerates the atherosclerosis in ApoE-deficient mice fed standard low cholesterol diet. J. Atheroscler. Thromb. 17: 796-804.   DOI
36 Gilliland SE, Walker DK. 1990. Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. J. Dairy Sci. 73: 905-911.   DOI
37 Gilliland SE, Nelson CR, Maxwell C. 1985. Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microbiol. 49: 377-381.   DOI
38 Tegegne BA, Kebede B. 2022. Probiotics, their prophylactic and therapeutic applications in human health development: a review of the literature. Heliyon 8: e09725.   DOI
39 Bennett A, Eley KG. 1976. Intestinal pH and propulsion: an explanation of diarrhoea in lactase deficiency and laxation by lactulose. J. Pharm. Pharmacol. 28: 192-195.   DOI
40 Goldin BR, Gorbach SL. 1980. Effect of Lactobacillus acidophilus dietary supplements on 1,2-dimethylhydrazine dihydrochlorideinduced intestinal cancer in rats. J. Natl. Cancer Inst. 64: 263-265.   DOI
41 Park YH, Kim JG, Shin YW, Kim SH, Whang KY. 2007. Effect of dietary inclusion of Lactobacillus acidophilus ATCC 43121 on cholesterol metabolism in rats. J. Microbiol. Biotechnol. 17: 655-662.
42 Claesson MJ, van Sinderen D, O'Toole PW. 2007. The genus Lactobacillus--a genomic basis for understanding its diversity. FEMS Microbiol. Lett. 269: 22-28.   DOI
43 Mital BK, Garg SK. 1995. Anticarcinogenic, hypocholesterolemic, and antagonistic activities of Lactobacillus acidophilus. Crit. Rev. Microbiol. 21: 175-214.   DOI
44 Bull M, Plummer S, Marchesi J, Mahenthiralingam E. 2013. The life history of Lactobacillus acidophilus as a probiotic: a tale of revisionary taxonomy, misidentification and commercial success. FEMS Microbiol. Lett. 349: 77-87.   DOI
45 Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O, et al. 2005. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc. Natl. Acad. Sci. USA 102: 3906-3912.   DOI
46 Shah NP. 2007. Functional cultures and health benefits. Int. Dairy J. 17: 1262-1277.   DOI
47 Khaleghi M, Kermanshahi RK, Yaghoobi MM, Zarkesh-Esfahani SH, Baghizadeh A. 2010. Assessment of bile salt effects on s-layer production, slp gene expression and some physicochemical properties of Lactobacillus acidophilus ATCC 4356. J. Microbiol. Biotechnol. 20: 749-756.
48 Park YH, Kim JG, Shin YW, Kim HS, Kim YJ, Chun T, et al. 2008. Effects of Lactobacillus acidophilus 43121 and a mixture of Lactobacillus casei and Bifidobacterium longum on the serum cholesterol level and fecal sterol excretion in hypercholesterolemiainduced pigs. Biosci. Biotechnol. Biochem. 72: 595-600.   DOI
49 Song M, Park S, Lee H, Min B, Jung S, Park S, et al. 2015. Effect of Lactobacillus acidophilus NS1 on plasma cholesterol levels in dietinduced obese mice. J. Dairy Sci. 98: 1492-1501.   DOI
50 Huang Y, Wang J, Cheng Y, Zheng Y. 2010. The hypocholesterolaemic effects of Lactobacillus acidophilus American type culture collection 4356 in rats are mediated by the down-regulation of Niemann-Pick C1-like 1. Br. J. Nutr. 104: 807-812.   DOI
51 Buck BL, Altermann E, Svingerud T, Klaenhammer TR. 2005. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. 71: 8344-8351.   DOI
52 Sanders ME, Walker DC, Walker KM, Aoyama K, Klaenhammer TR. 1996. Performance of commercial cultures in fluid milk applications. J. Dairy Sci. 79: 943-955.   DOI
53 Shah NP. 2000. Probiotic bacteria: selective enumeration and survival in dairy foods. J. Dairy Sci. 83: 894-907.   DOI
54 Gilliland SE. 1989. Acidophilus milk products: a review of potential benefits to consumers. J. Dairy Sci. 72: 2483-2494.   DOI
55 Montes RG, Bayless TM, Saavedra JM, Perman JA. 1995. Effect of milks inoculated with Lactobacillus acidophilus or a yogurt starter culture in lactose-maldigesting children. J. Dairy Sci. 78: 1657-1664.   DOI
56 Shah N. 1993. Effectiveness of dairy-products in alleviation of lactose-intolerance. Food Aust. 45: 268-271.
57 Lin MY, Yen CL, Chen SH. 1998. Management of lactose maldigestion by consuming milk containing lactobacilli. Dig. Dis. Sci. 43: 133-137.   DOI
58 Kim HS, Gilliland SE. 1983. Lactobacillus acidophilus as a dietary adjunct for milk to aid lactose digestion in humans. J. Dairy Sci. 66: 959-966.   DOI
59 Newcomer AD, Park HS, O'Brien PC, McGill DB. 1983. Response of patients with irritable bowel syndrome and lactase deficiency using unfermented acidophilus milk. Am. J. Clin. Nutr. 38: 257-263.   DOI
60 McDonough FE, Hitchins AD, Wong NP, Wells P, Bodwell CE. 1987. Modification of sweet acidophilus milk to improve utilization by lactose-intolerant persons. Am. J. Clin. Nutr. 45: 570-574.   DOI
61 El-Deeb NM, Yassin AM, Al-Madboly LA, El-Hawiet A. 2018. A novel purified Lactobacillus acidophilus 20079 exopolysaccharide, LA-EPS-20079, molecularly regulates both apoptotic and NF-kappaB inflammatory pathways in human colon cancer. Microb. Cell Fact. 17: 29.   DOI
62 Azcarate-Peril MA, McAuliffe O, Altermann E, Lick S, Russell WM, Klaenhammer TR. 2005. Microarray analysis of a twocomponent regulatory system involved in acid resistance and proteolytic activity in Lactobacillus acidophilus. Appl. Environ. Microbiol. 71: 5794-5804.   DOI
63 Wang KY, Li SN, Liu CS, Perng DS, Su YC, Wu DC, et al. 2004. Effects of ingesting Lactobacillus- and Bifidobacterium-containing yogurt in subjects with colonized Helicobacter pylori. Am. J. Clin. Nutr. 80: 737-741.
64 Reid G, Jass J, Sebulsky MT, McCormick JK. 2003. Potential uses of probiotics in clinical practice. Clin. Microbiol. Rev. 16: 658-672.   DOI
65 Goldin BR, Gorbach SL. 1984. The effect of milk and lactobacillus feeding on human intestinal bacterial enzyme activity. Am. J. Clin. Nutr. 39: 756-761.   DOI
66 Zhang P, Han X, Zhang X, Zhu X. 2021. Lactobacillus acidophilus ATCC 4356 alleviates renal ischemia-reperfusion injury through antioxidant stress and anti-inflammatory responses and improves intestinal microbial distribution. Front. Nutr. 8: 667695.   DOI
67 Wagner RD, Pierson C, Warner T, Dohnalek M, Farmer J, Roberts L, et al. 1997. Biotherapeutic effects of probiotic bacteria on candidiasis in immunodeficient mice. Infect. Immun. 65: 4165-4172.   DOI
68 Tejada-Simon MV, Lee JH, Ustunol Z, Pestka JJ. 1999. Ingestion of yogurt containing Lactobacillus acidophilus and Bifidobacterium to potentiate immunoglobulin A responses to cholera toxin in mice. J. Dairy Sci. 82: 649-660.   DOI
69 Yang Y, Song M, Liu Y, Liu H, Sun L, Peng Y, et al. 2016. Renoprotective approaches and strategies in acute kidney injury. Pharmacol. Ther. 163: 58-73.   DOI
70 Sadeghzadeh J, Vakili A, Sameni HR, Shadnoush M, Bandegi AR, Zahedi Khorasani M. 2017. The effect of oral consumption of probiotics in prevention of heart injury in a rat myocardial infarction model: A histopathological, hemodynamic and biochemical evaluation. Iran Biomed J. 21: 174-181.   DOI
71 Reid G. 2000. In vitro testing of Lactobacillus acidophilus NCFM (TM) as a possible probiotic for the urogenital tract. Int. Dairy J. 10: 415-419.   DOI
72 Amdekar S, Singh V, Kumar A, Sharma P, Singh R. 2013. Lactobacillus casei and Lactobacillus acidophilus regulate inflammatory pathway and improve antioxidant status in collagen-induced arthritic rats. J. Interferon Cytokine Res. 33: 1-8.   DOI
73 Paul AK, Paul A, Jahan R, Jannat K, Bondhon TA, Hasan A, et al. 2021. Probiotics and amelioration of rheumatoid arthritis: Significant roles of Lactobacillus casei and Lactobacillus acidophilus. Microorganisms 9: 1070.   DOI