DOI QR코드

DOI QR Code

BFRP로 횡구속된 섬유 보강 콘크리트 압축부재의 성능평가

Performance Evaluation of Fiber-Reinforced Concrete Compression Members Transversely Constrained by BFRP

  • 이경복 (강릉원주대학교 토목공학과) ;
  • 이상문 (강릉원주대학교 방재연구소) ;
  • 정우영 (강릉원주대학교 토목공학과)
  • 투고 : 2022.07.04
  • 심사 : 2022.08.26
  • 발행 : 2022.10.01

초록

전 세계적으로 이상 기후 및 자연재난 등으로 인하여 철근콘크리트 구조물의 부식 및 열화 현상이 빈번히 발생됨에 따라 구조물의 노후화가 가속화되고 있다. 건설 분야에서는 이러한 내하력 저하에 대응하기 위하여 최근 저 중량 고강도 재료 장점을 가진 유리섬유 복합재료(GFRP)를 활용하여 많은 노후 구조물에 대하여 보수·보강을 수행하고 있다. 본 연구에서는 유리섬유에 비하여 보다 경제적이고 친환경적인 바잘트 섬유 복합재료(BFRP)를 활용하여 콘크리트 압축부재의 내진보강을 위한 횡구속 효과를 더욱 효과적으로 제공할 수 있는 보강재를 개발하고 그 성능을 평가하였다. 실험 시 고려된 주요 변수로는 바잘트섬유 복합재료(BFRP) 시공 시 적용되는 함침 수지의 양생 온도와 대상 콘크리트 압축부재의 재료 특성을 고려하였다. 콘크리트 압축부재의 재료 특성에 따른 횡구속 보강효과를 조사하기 위하여 본 연구에서는 일반 콘크리트와 섬유 보강을 통하여 내구성능이 개선된 콘크리트 시험체를 각각 제작하여 성능을 평가하였다. 그 결과, 일반 콘크리트의 경우 3.15배, 섬유 보강 콘크리트의 경우 약 3.72배의 보강 효과가 나타났으며 압축부재 내구특성 개선에 따른 보강 효과의 차이는 크지 않음을 알 수 있었다. 마지막으로 GFRP 압축부재 보강재에 대한 선행연구 결과를 통하여 바잘트 보강 복합재료의 성능을 비교한 결과 BFRP 보강재의 횡구속 보강효과가 상대적으로 약 1.18배 GFRP 보강재에 비하여 성능이 우수한 것으로 나타났다.

Corrosion and degradation of reinforced structures due to abnormal climates and natural disasters further accelerate the aging of structures. Coping with the decrease in structure performance, many old structures are being repaired and reinforced with low-weight and high-strength materials such as glass fiber composite material (GFRP). To further contribute, this paper focus on a more economical and eco-friendly material, basalt fiber composite (BFRP), which provide a more effective lateral constraint effect for seismic reinforcement. The main variables considered in this study are the curing temperature during the manufacturing of BFRP and the material characteristics of the target concrete member. The lateral constraint reinforcement effect was investigated through the evaluation of the performance of normal concrete and those with improved durability through fiber reinforcement. The reinforcement effect was 3.15 times for normal concrete and 3.72 times for fiber reinforced concrete, and the difference in reinforcement effect due to the improvement of the durability characteristics of the compression member was not significant. Lastly, the performance of the BFRP was compared with the results of the GFRP reinforcement from the previous study. The effect of the BFRP reinforcement was 1.18 times better than that of the GFRP reinforcement.

키워드

과제정보

본 연구는 2022년 국토교통부/국토교통과학기술진흥원의 지원(No. 22CFRP-C163381-02)으로 수행되었음.

참고문헌

  1. Chhorn, B. and Jung, W. Y. (2020). "Evaluation of buckling resistance of basalt fiber reinforced polymer plate." Iranian Journal of Science and Technology, Transactions of Civil Engineering, Vol. 44, No. 1, pp. 229-240. https://doi.org/10.1007/s40996-019-00344-1
  2. Cho, D. W. (2020). Bending test of concrete beam reinforced with BFRP plate and soft coating agent, Master's Thesis, Gangneung Wonju University, Gangneung, Korea (in Korean).
  3. Choi, H. K., Bae, B. I. and Koo, H. S. (2015). "Correlation between mix proportion and mechanical characteristics of steel fiber reinforced concrete." Journal of the Korea Concrete Institute, Vol. 27, No. 4, pp. 331-341. DOI: https://dx.doi.org/10.4334/JKCI.2015.27.4.331 (in Korean).
  4. Dawei, Z. (2016). "Effect of PET wrapping on shear performance of corroded reinforced concrete columns." 5th International Conference on Durability of Concrete Structures 2016, Shenzhen, Guangdong Province, China, pp. 141-146. DOI: 10.5703/1288284316123.
  5. Heon, Y. J. (2016). A study on the mechanical property of fiber reinforced high strength concrete, Ph.D. Thesis, Joongbu University, Geumsan, Korea (in Korean).
  6. Jung, W. Y., Kim, J. S. and Kwon, M. H. (2013). "Evaluation of tensile material properties and confined performance of GFRP composite due to temperature elevation." Journal of the Korea Academia-Industrial cooperation Society, Vol. 14, No. 7, pp. 3562-3569. DOI: https://dx.doi.org/10.5762/KAIS2013.14.7.3562 (in Korean).
  7. Kim, G. R. (2021). "Structural evaluation of masonry wall reinforced by built-up T-joint BFRP plates." Journal of the Korean Society for Advanced Composite Structures, Vol. 12, No. 5, pp. 25-36. DOI: 10.11004/kosacs.2021.12.5.025.
  8. Korea Expressway Corporation (2005). 2005 Highway design practical handbook, Korea Expressway Corporation (in Korean).
  9. Korea Institute of Construction Technology (KICT) (2017). Structural performance improvement of infrastructures using FRP composites, Final Report, Korea Institute of Construction Technology. DOI: https://doi.org/10.23000/TRKO201800042659 (in Korean).
  10. KS F 2403 (2019). Standard test method for making and curing concrete specimens, Korea Construction Living Environment Testing Institute (in Korean).
  11. KS F 2405 (2017). Standard test method for compressive strength of concrete, Korea Construction Living Environment Testing Institute (in Korean).
  12. KS F 2456 (2018). Standard test method for resistance of concrete to rapid freezing and thawing, Korea Construction Living Environment Testing Institute (in Korean).
  13. Kwak, Y. J. (2019). Evaluation of proto-BFRP border attachment strength according to freezing, temperature, and crack repair, Master's Thesis, Gangneung Wonju University, Gangneung (in Korean).
  14. Lee, C. H. and Eo, S. H. (2020). "Compressive strength and durability evaluation by freezing and thawing test of repaired reinforced concrete columns." International Journal of Contents, Vol. 20, No. 12, pp. 529-536. DOI: https://doi.org/10.5392/JKCA.2020.20.12.529 (in Korean).
  15. Lee, D. H., Kim, Y. S. and Chung, Y. S. (2006). "Stress-strain behavior characteristics of concrete cylinders confined with FRP wrap." Journal of the Korea Concrete Institute, Vol. 19, No. 2, pp. 135-144. DOI: https://doi.org/10.4334/jkci.2007.19.2.135 (in Korean).
  16. Lee, S. K., Min, K. H., Kook, K. H., Shin, H. O. and Yoon, Y. S. (2009). "An experimental study on unidirectional compressive behaviors of the FRP sheet confined concrete." Proceedings of the 2009 regular symposium of the Korean Society of Civil Engineers, Vol. 2009, No. 10, pp. 1343-1346 (in Korean).
  17. Sim, J. S., Park, S. G., Mun, D. Y. and Park, S. J. (2004). "A study on the durability and flexural strengthening capacity of continuous basalt reinforcing fibers." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 24, No. 4, pp. 673-681 (in Korean).
  18. Ye, Y. Y., Liang, S. D., Feng, P. and Zeng, J. J. (2021). "Recyclable LRS FRP composites for engineering structures: current status and future opportunities." Composite Part B: Engineering. China, Vol. 212, pp. 1-22. DOI: https://doi.org/10.1016/j.compositesb.2021.108689.
  19. Yoon, Y. S., Cho, S. J. and Kwon, S. J. (2019). "Prediction equation for chloride diffusion in concrete containing GGBFS based on 2-year cured results." Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 23, No. 2, pp. 1-9. DOI: https://doi.org/10.11112/ksmi.2019.23.2.1 (in Korean).