DOI QR코드

DOI QR Code

Identifying immunodominant multi-epitopes from the envelope glycoprotein of the Lassa mammarenavirus as vaccine candidate for Lassa fever

  • Received : 2022.05.26
  • Accepted : 2022.07.26
  • Published : 2022.09.30

Abstract

Purpose: Lassa fever is a zoonotic acute viral hemorrhagic disease caused by Lassa virus (LASV). There is currently no licensed vaccine for the prevention of the disease. This study is aimed at discovering immunodominant epitopes from the envelope glycoprotein of the Lassa mammarenavirus and designing of a multi-epitope vaccine candidate (VC). Materials and Methods: The amino acid sequences of the envelope glycoprotein of 26 strains of LASV from five countries were selected. After evaluation for antigenicity, immunogenicity, allergenicity, and toxicity, immunodominant CD8, CD4, and linear B lymphocytes were also selected. The selected epitopes were modelled and a molecular docking with the appropriate major histocompatibility complex (MHC) proteins was performed. Using an adjuvant and linkers, a multi-epitope VC was designed. The VC was evaluated for its physicochemical and immunological properties and structurally refined, validated, and mutated (disulphide engineering). The complex formed by the VC and the toll-like receptor-4 receptor was subjected to molecular dynamic simulation (MDS) followed by in silico cloning in a plasmid vector. Results: A VC with 203 sequences, 22.13 kDa weight, isoelectric point of 9.85 (basic), instability index value of 27.62, aliphatic index of 68.87, and GRAVY value of -0.455 (hydrophilic) emerged. The VC is predicted to be non-allergenic with antigenicity, MHC I immunogenicity, and solubility upon overexpression values of 0.81, 2.04, and 0.86 respectively. The VC also has an estimated half-life greater than 10 hours in Escherichia coli and showed stability in all the parameters of MDS. Conclusion: The VC shows good promise in the prevention of Lassa fever but further tests are required to validate its safety and efficacy.

Keywords

References

  1. Hallam HJ, Hallam S, Rodriguez SE, et al. Baseline mapping of Lassa fever virology, epidemiology and vaccine research and development. NPJ Vaccines 2018;3:11. 
  2. Rowaiye AB, Oli AN, Onuh OA, et al. Rhamnetin is a better inhibitor of SARS-CoV-2 2'-O-methyltransferase than dolutegravir: a computational prediction. Afr J Infect Dis 2022;16:80-96. 
  3. Ogbu O, Ajuluchukwu E, Uneke CJ. Lassa fever in West African sub-region: an overview. J Vector Borne Dis 2007;44:1-11. 
  4. Merson L, Bourner J, Jalloh S, et al. Clinical characterization of Lassa fever: a systematic review of clinical reports and research to inform clinical trial design. PLoS Negl Trop Dis 2021;15:e0009788. 
  5. Oyeribhor AO. Lived experiences of Lassa fever survivors in Southsouth Nigeria [dissertation]. Minneapolis (MN): Walden University; 2021. 
  6. Fischer RJ, Purushotham JN, van Doremalen N, et al. ChAdOx1-vectored Lassa fever vaccine elicits a robust cellular and humoral immune response and protects guinea pigs against lethal Lassa virus challenge. NPJ Vaccines 2021;6:32. 
  7. Shanmugam A, Rajoria S, George AL, Mittelman A, Suriano R, Tiwari RK. Synthetic Toll like receptor-4 (TLR-4) agonist peptides as a novel class of adjuvants. PLoS One 2012;7:e30839. 
  8. Herrera LR. In silico approach in designing a novel multi-epitope vaccine candidate against non-small cell lung cancer with overexpressed G protein-coupled receptor 56. Asian Pac J Cancer Prev 2020;21:2297-306. 
  9. Dorosti H, Eslami M, Negahdaripour M, et al. Vaccinomics approach for developing multi-epitope peptide pneumococcal vaccine. J Biomol Struct Dyn 2019;37:3524-35. 
  10. Nain Z, Abdulla F, Rahman MM, et al. Proteome-wide screening for designing a multi-epitope vaccine against emerging pathogen Elizabethkingia anophelis using immunoinformatic approaches. J Biomol Struct Dyn 2020;38:4850-67. 
  11. Abdellrazeq GS, Fry LM, Elnaggar MM, et al. Simultaneous cognate epitope recognition by bovine CD4 and CD8 T cells is essential for primary expansion of antigen-specific cytotoxic T-cells following ex vivo stimulation with a candidate Mycobacterium avium subsp. paratuberculosis peptide vaccine. Vaccine 2020;38:2016-25. 
  12. Martin WR, Cheng F. A rational design of a multi-epitope vaccine against SARS-CoV-2 which accounts for the glycan shield of the spike glycoprotein. J Biomol Struct Dyn 2022;40:7099-113. 
  13. Heo L, Park H, Seok C. GalaxyRefine: protein structure refinement driven by side-chain repacking. Nucleic Acids Res 2013;41(Web Server issue):W384-8. 
  14. Schiffrin B, Radford SE, Brockwell DJ, Calabrese AN. PyXlinkViewer: a flexible tool for visualization of protein chemical crosslinking data within the PyMOL molecular graphics system. Protein Sci 2020;29:1851-7. 
  15. Yan Y, Zhang D, Zhou P, Li B, Huang SY. HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res 2017;45(W1):W365-73. 
  16. Sharp PM, Li WH. The codon Adaptation Index: a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 1987;15:1281-95. 
  17. Stokes WA, Glick BS. MICA: desktop software for comprehensive searching of DNA databases. BMC Bioinformatics 2006;7:427. 
  18. Weisblum Y, Schmidt F, Zhang F, et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. Elife 2020;9:e61312. 
  19. Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 2007;8:4. 
  20. Kumar J, Qureshi R, Sagurthi SR, Qureshi IA. Designing of nucleocapsid protein based novel multi-epitope vaccine against SARS-CoV-2 using immunoinformatics approach. Int J Pept Res Ther 2021;27:941-56. 
  21. Scheiblhofer S, Laimer J, Machado Y, Weiss R, Thalhamer J. Influence of protein fold stability on immunogenicity and its implications for vaccine design. Expert Rev Vaccines 2017;16:479-89. 
  22. Gu H, Liao Y, Zhang J, et al. Rational design and evaluation of an artificial Escherichia coli K1 protein vaccine candidate based on the structure of OmpA. Front Cell Infect Microbiol 2018;8:172. 
  23. Haimov B, Srebnik S. A closer look into the α-helix basin. Sci Rep 2016;6:38341. 
  24. Aldakheel FM, Abrar A, Munir S, et al. Proteome-wide mapping and reverse vaccinology approaches to design a multi-epitope vaccine against Clostridium perfringens. Vaccines (Basel) 2021;9:1079. 
  25. Bonam SR, Partidos CD, Halmuthur SK, Muller S. An overview of novel adjuvants designed for improving vaccine efficacy. Trends Pharmacol Sci 2017;38:771-93. 
  26. Greenbaum JA, Andersen PH, Blythe M, et al. Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J Mol Recognit 2007;20:75-82. 
  27. Erkes DA, Selvan SR. Hapten-induced contact hypersensitivity, autoimmune reactions, and tumor regression: plausibility of mediating antitumor immunity. J Immunol Res 2014;2014:175265. 
  28. Islinger M, Wildgruber R, Volkl A. Preparative free-flow electrophoresis, a versatile technology complementing gradient centrifugation in the isolation of highly purified cell organelles. Electrophoresis 2018;39:2288-99. 
  29. Oladipo EK, Ajayi AF, Ariyo OE, et al. Exploration of surface glycoprotein to design multi-epitope vaccine for the prevention of COVID-19. Inform Med Unlocked 2020;21:100438. 
  30. Habibi N, Mohd Hashim SZ, Norouzi A, Samian MR. A review of machine learning methods to predict the solubility of overexpressed recombinant proteins in Escherichia coli. BMC Bioinformatics 2014;15:134. 
  31. Williams CJ, Headd JJ, Moriarty NW, et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci 2018;27:293-315. 
  32. Navone L, Vogl T, Luangthongkam P, et al. Disulfide bond engineering of AppA phytase for increased thermostability requires co-expression of protein disulfide isomerase in Pichia pastoris. Biotechnol Biofuels 2021;14:80. 
  33. Smith DK, Radivojac P, Obradovic Z, Dunker AK, Zhu G. Improved amino acid flexibility parameters. Protein Sci 2003;12:1060-72. 
  34. Lopez-Blanco JR, Aliaga JI, Quintana-Orti ES, Chacon P. iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res 2014;42(Web Server issue):W271-6. 
  35. Xing Y, Gong R, Xu Y, Liu K, Zhou M. Codon usage bias affects α-amylase mRNA level by altering RNA stability and cytosine methylation patterns in Escherichia coli. Can J Microbiol 2020;66:521-8. 
  36. Lee S, Weon S, Lee S, Kang C. Relative codon adaptation index, a sensitive measure of codon usage bias. Evol Bioinform Online 2010;6:47-55. 
  37. Newman ZR, Young JM, Ingolia NT, Barton GM. Differences in codon bias and GC content contribute to the balanced expression of TLR7 and TLR9. Proc Natl Acad Sci U S A 2016;113:E1362-71. 
  38. Grote A, Hiller K, Scheer M, et al. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 2005;33(Web Server issue):W526-31. 
  39. Biocompare. Bench Tips: Primers, by design: tips for optimal DNA primer design [Internet]. San Francisco (CA): Biocompare; 2013 [cited 2021 Mar 8]. Available from: https://www.biocompare.com/Bench-Tips/133581-Primers-by-Design-Tips-for-Optimal-DNA-Primer-Design/. 
  40. Kayama K, Kanno M, Chisaki N, et al. Prediction of PCR amplification from primer and template sequences using recurrent neural network. Sci Rep 2021;11:7493.