DOI QR코드

DOI QR Code

A NEW OPTIMAL EIGHTH-ORDER FAMILY OF MULTIPLE ROOT FINDERS

  • Cebic, Dejan (Department of Applied Mathematics and Informatics Faculty of Mining and Geology University of Belgrade) ;
  • Ralevic, Nebojsa M. (Department of Mathematics Faculty of Techincal Sciences University of Novi Sad)
  • Received : 2021.10.01
  • Accepted : 2022.09.14
  • Published : 2022.11.01

Abstract

This paper presents a new optimal three-step eighth-order family of iterative methods for finding multiple roots of nonlinear equations. Different from the all existing optimal methods of the eighth-order, the new iterative scheme is constructed using one function and three derivative evaluations per iteration, preserving the efficiency and optimality in the sense of Kung-Traub's conjecture. Theoretical results are verified through several standard numerical test examples. The basins of attraction for several polynomials are also given to illustrate the dynamical behaviour and the obtained results show better stability compared to the recently developed optimal methods.

Keywords

References

  1. R. Behl, A. S. Alshomrani, and S. S. Motsa, An optimal scheme for multiple roots of nonlinear equations with eighth-order convergence, J. Math. Chem. 56 (2018), no. 7, 2069-2084. https://doi.org/10.1007/s10910-018-0857-x
  2. R. Behl, I. Argyros, M. Argyros, M. Salimi, and A. J. Alsolami, An Iteration Function Having Optimal Eighth-Order of Convergence for Multiple Roots and Local Convergence, Mathematics 8 (2020), 1419. https://doi.org/10.3390/math8091419
  3. R. Behl, A. Cordero, S. S. Motsa, and J. R. Torregrosa, An eighth-order family of optimal multiple root finders and its dynamics, Numer. Algorithms 77 (2018), no. 4, 1249-1272. https://doi.org/10.1007/s11075-017-0361-6
  4. R. Behl, F. Zafar, A. S. Alshormani, M. Junjua, and N. Yasmin, An optimal eighth-order scheme for multiple zeros of univariate functions, Int. J. Comput. Methods 16 (2019), no. 4, 1843002, 14 pp. https://doi.org/10.1142/S0219876218430028
  5. P. Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 85-141. https://doi.org/10.1090/S0273-0979-1984-15240-6
  6. C. Chun and B. Neta, Basins of attraction for Zhou-Chen-Song fourth order family of methods for multiple roots, Math. Comput. Simulation 109 (2015), 74-91. https://doi.org/10.1016/j.matcom.2014.08.005
  7. Y. H. Geum, Y. I. Kim, and B. Neta, Constructing a family of optimal eighth-order modified Newton-type multiple-zero finders along with the dynamics behind their purely imaginary extraneous fixed points, J. Comput. Appl. Math. 333 (2018), 131-156. https://doi.org/10.1016/j.cam.2017.10.033
  8. D. Kumar, S. Kumar, J. R. Sharma, and M. d'Amore, Generating optimal eighth order methods for computing multiple roots, Symmetry 12 (2020), 1947. https://doi.org/10.3390/sym12121947
  9. H. T. Kung and J. F. Traub, Optimal order of one-point and multipoint iteration, J. Assoc. Comput. Mach. 21 (1974), 643-651. https://doi.org/10.1145/321850.321860
  10. M.-Y. Lee, Y. Ik Kim, and A. Magrenan, On the dynamics of a triparametric family of optimal fourth-order multiple-zero finders with a weight function of the principal mth root of a function-to function ratio, Appl. Math. Comput. 315 (2017), 564-590. https://doi.org/10.1016/j.amc.2017.08.005
  11. B. Liu and X. Zhou, A new family of fourth-order methods for multiple roots of nonlinear equations, Nonlinear Anal. Model. Control 18 (2013), no. 2, 143-152. https://doi.org/10.15388/NA.18.2.14018
  12. B. Neta and C. Chun, Basins of attraction for several optimal fourth order methods for multiple roots, Math. Comput. Simulation 103 (2014), 39-59. https://doi.org/10.1016/j.matcom.2014.03.007
  13. M. S. Petkovic and L. D. Petkovic, Construction and efficiency of multipoint rootratio methods for finding multiple zeros, J. Comput. Appl. Math. 351 (2019), 54-65. https://doi.org/10.1016/j.cam.2018.10.042
  14. L. B. Rall, Convergence of the Newton process to multiple solutions, Numer. Math. 9(1966), 23-37. https://doi.org/10.1007/BF02165226
  15. E. Schroder, Ueber unendlich viele Algorithmen zur Auflosung der Gleichungen, Math. Ann. 2 (1870), no. 2, 317-365. https://doi.org/10.1007/BF01444024
  16. M. Scott, B. Neta, and C. Chun, Basin attractors for various methods, Appl. Math. Comput. 218 (2011), no. 6, 2584-2599. https://doi.org/10.1016/j.amc.2011.07.076
  17. J. R. Sharma and S. Kumar, An excellent numerical technique for multiple roots, Math. Comput. Simulation 182 (2021), 316-324. https://doi.org/10.1016/j.matcom.2020.11.008
  18. B. Stewart, Attractor basins of various root-finding methods, (M.S. thesis), Naval Postgraduate School Monterey CA, 2001.
  19. J. L. Varona, Graphic and numerical comparison between iterative methods, Math. Intelligencer 24 (2002), no. 1, 37-46. https://doi.org/10.1007/BF03025310
  20. E. R. Vrscay and W. J. Gilbert, Extraneous fixed points, basin boundaries and chaotic dynamics for Schr¨oder and K¨onig rational iteration functions, Numer. Math. 52 (1988), no. 1, 1-16. https://doi.org/10.1007/BF01401018
  21. S. Weerakoon and T. G. I. Fernando, A variant of Newton's method with accelerated third-order convergence, Appl. Math. Lett. 13 (2000), no. 8, 87-93. https://doi.org/10.1016/S0893-9659(00)00100-2
  22. F. Zafar, A. Cordero, M. Junjua, and J. R. Torregrosa, Optimal eighth-order iterative methods for approximating multiple zeros of nonlinear functions, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114 (2020), no. 2, Paper No. 64, 17 pp. https://doi.org/10.1007/s13398-020-00794-7
  23. F. Zafar, A. Cordero, R. Quratulain, and J. R. Torregrosa, Optimal iterative methods for finding multiple roots of nonlinear equations using free parameters, J. Math. Chem. 56 (2018), no. 7, 1884-1901. https://doi.org/10.1007/s10910-017-0813-1
  24. F. Zafar, A. Cordero, S. Sultana, and J. R. Torregrosa, Optimal iterative methods for finding multiple roots of nonlinear equations using weight functions and dynamics, J. Comput. Appl. Math. 342 (2018), 352-374. https://doi.org/10.1016/j.cam.2018.03.033
  25. X. Zhou, X. Chen, and Y. Song, Families of third and fourth order methods for multiple roots of nonlinear equations, Appl. Math. Comput. 219 (2013), no. 11, 6030-6038. https://doi.org/10.1016/j.amc.2012.12.041