Browse > Article
http://dx.doi.org/10.4134/JKMS.j210607

A NEW OPTIMAL EIGHTH-ORDER FAMILY OF MULTIPLE ROOT FINDERS  

Cebic, Dejan (Department of Applied Mathematics and Informatics Faculty of Mining and Geology University of Belgrade)
Ralevic, Nebojsa M. (Department of Mathematics Faculty of Techincal Sciences University of Novi Sad)
Publication Information
Journal of the Korean Mathematical Society / v.59, no.6, 2022 , pp. 1067-1082 More about this Journal
Abstract
This paper presents a new optimal three-step eighth-order family of iterative methods for finding multiple roots of nonlinear equations. Different from the all existing optimal methods of the eighth-order, the new iterative scheme is constructed using one function and three derivative evaluations per iteration, preserving the efficiency and optimality in the sense of Kung-Traub's conjecture. Theoretical results are verified through several standard numerical test examples. The basins of attraction for several polynomials are also given to illustrate the dynamical behaviour and the obtained results show better stability compared to the recently developed optimal methods.
Keywords
Nonlinear equation; multiple root; optimal methods; eighth-order of convergence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Zhou, X. Chen, and Y. Song, Families of third and fourth order methods for multiple roots of nonlinear equations, Appl. Math. Comput. 219 (2013), no. 11, 6030-6038. https://doi.org/10.1016/j.amc.2012.12.041   DOI
2 R. Behl, I. Argyros, M. Argyros, M. Salimi, and A. J. Alsolami, An Iteration Function Having Optimal Eighth-Order of Convergence for Multiple Roots and Local Convergence, Mathematics 8 (2020), 1419.   DOI
3 R. Behl, A. S. Alshomrani, and S. S. Motsa, An optimal scheme for multiple roots of nonlinear equations with eighth-order convergence, J. Math. Chem. 56 (2018), no. 7, 2069-2084. https://doi.org/10.1007/s10910-018-0857-x   DOI
4 J. R. Sharma and S. Kumar, An excellent numerical technique for multiple roots, Math. Comput. Simulation 182 (2021), 316-324. https://doi.org/10.1016/j.matcom.2020.11.008   DOI
5 J. L. Varona, Graphic and numerical comparison between iterative methods, Math. Intelligencer 24 (2002), no. 1, 37-46. https://doi.org/10.1007/BF03025310   DOI
6 E. R. Vrscay and W. J. Gilbert, Extraneous fixed points, basin boundaries and chaotic dynamics for Schr¨oder and K¨onig rational iteration functions, Numer. Math. 52 (1988), no. 1, 1-16. https://doi.org/10.1007/BF01401018   DOI
7 F. Zafar, A. Cordero, M. Junjua, and J. R. Torregrosa, Optimal eighth-order iterative methods for approximating multiple zeros of nonlinear functions, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 114 (2020), no. 2, Paper No. 64, 17 pp. https://doi.org/10.1007/s13398-020-00794-7   DOI
8 R. Behl, F. Zafar, A. S. Alshormani, M. Junjua, and N. Yasmin, An optimal eighth-order scheme for multiple zeros of univariate functions, Int. J. Comput. Methods 16 (2019), no. 4, 1843002, 14 pp. https://doi.org/10.1142/S0219876218430028   DOI
9 F. Zafar, A. Cordero, S. Sultana, and J. R. Torregrosa, Optimal iterative methods for finding multiple roots of nonlinear equations using weight functions and dynamics, J. Comput. Appl. Math. 342 (2018), 352-374. https://doi.org/10.1016/j.cam.2018.03.033   DOI
10 C. Chun and B. Neta, Basins of attraction for Zhou-Chen-Song fourth order family of methods for multiple roots, Math. Comput. Simulation 109 (2015), 74-91. https://doi.org/10.1016/j.matcom.2014.08.005   DOI
11 P. Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 85-141. https://doi.org/10.1090/S0273-0979-1984-15240-6   DOI
12 Y. H. Geum, Y. I. Kim, and B. Neta, Constructing a family of optimal eighth-order modified Newton-type multiple-zero finders along with the dynamics behind their purely imaginary extraneous fixed points, J. Comput. Appl. Math. 333 (2018), 131-156. https://doi.org/10.1016/j.cam.2017.10.033   DOI
13 D. Kumar, S. Kumar, J. R. Sharma, and M. d'Amore, Generating optimal eighth order methods for computing multiple roots, Symmetry 12 (2020), 1947.   DOI
14 B. Liu and X. Zhou, A new family of fourth-order methods for multiple roots of nonlinear equations, Nonlinear Anal. Model. Control 18 (2013), no. 2, 143-152.   DOI
15 L. B. Rall, Convergence of the Newton process to multiple solutions, Numer. Math. 9(1966), 23-37. https://doi.org/10.1007/BF02165226   DOI
16 M. Scott, B. Neta, and C. Chun, Basin attractors for various methods, Appl. Math. Comput. 218 (2011), no. 6, 2584-2599. https://doi.org/10.1016/j.amc.2011.07.076   DOI
17 M.-Y. Lee, Y. Ik Kim, and A. Magrenan, On the dynamics of a triparametric family of optimal fourth-order multiple-zero finders with a weight function of the principal mth root of a function-to function ratio, Appl. Math. Comput. 315 (2017), 564-590. https://doi.org/10.1016/j.amc.2017.08.005   DOI
18 E. Schroder, Ueber unendlich viele Algorithmen zur Auflosung der Gleichungen, Math. Ann. 2 (1870), no. 2, 317-365. https://doi.org/10.1007/BF01444024   DOI
19 H. T. Kung and J. F. Traub, Optimal order of one-point and multipoint iteration, J. Assoc. Comput. Mach. 21 (1974), 643-651. https://doi.org/10.1145/321850.321860   DOI
20 B. Neta and C. Chun, Basins of attraction for several optimal fourth order methods for multiple roots, Math. Comput. Simulation 103 (2014), 39-59. https://doi.org/10.1016/j.matcom.2014.03.007   DOI
21 B. Stewart, Attractor basins of various root-finding methods, (M.S. thesis), Naval Postgraduate School Monterey CA, 2001.
22 S. Weerakoon and T. G. I. Fernando, A variant of Newton's method with accelerated third-order convergence, Appl. Math. Lett. 13 (2000), no. 8, 87-93. https://doi.org/10.1016/S0893-9659(00)00100-2   DOI
23 R. Behl, A. Cordero, S. S. Motsa, and J. R. Torregrosa, An eighth-order family of optimal multiple root finders and its dynamics, Numer. Algorithms 77 (2018), no. 4, 1249-1272. https://doi.org/10.1007/s11075-017-0361-6   DOI
24 M. S. Petkovic and L. D. Petkovic, Construction and efficiency of multipoint rootratio methods for finding multiple zeros, J. Comput. Appl. Math. 351 (2019), 54-65. https://doi.org/10.1016/j.cam.2018.10.042   DOI
25 F. Zafar, A. Cordero, R. Quratulain, and J. R. Torregrosa, Optimal iterative methods for finding multiple roots of nonlinear equations using free parameters, J. Math. Chem. 56 (2018), no. 7, 1884-1901. https://doi.org/10.1007/s10910-017-0813-1   DOI