DOI QR코드

DOI QR Code

Assessing greenhouse gas footprint and emission pathways in Daecheong Reservoir

대청댐 저수지의 온실가스 발자국 및 배출 경로 평가

  • Min, Kyeong Seo (Department of Environment Engineering, Chungbuk National University) ;
  • Chung, Se Woong (Department of Environment Engineering, Chungbuk National University) ;
  • Kim, Sung Jin (Department of Environment Engineering, Chungbuk National University) ;
  • Kim, Dong Kyun (K-water Research Institute)
  • 민경서 (충북대학교 환경공학과) ;
  • 정세웅 (충북대학교 환경공학과) ;
  • 김성진 (충북대학교 환경공학과) ;
  • 김동균 (한국수자원공사 K-water연구원)
  • Received : 2022.08.29
  • Accepted : 2022.09.28
  • Published : 2022.10.31

Abstract

The aim of this study was to characterize the emission pathways and the footprint of greenhouse gases (GHG) in Daecheong Reservoir using the G-res Tool, and to evaluate the GHG emission intensity (EI) compared to other energy sources. In addition, the change in GHG emissions was assessed in response to the total phosphorus (TP) concentration. The GHG flux in post-impoundment was found to be 262 gCO2eq/m2/yr, of which CO2 and CH4 were 45.7% and 54.2%, respectively. Diffusion of CO2 contributed the most, followed by diffusion, degassing, and bubbling of CH4. The net GHG flux increased to 510 gCO2eq/m2/yr because the forest (as CO2 sink) was lost after dam construction. The EI of Daecheong Reservoir was 86.8 gCO2eq/kWh, which is 3.7 times higher than the global EI of hydroelectric power, due to its low power density. However, it was remarkable to highlight the value to be 9.5 times less than that of coal, a fossil fuel. We also found that a decrease in TP concentration in the reservoir leads to a decrease in GHG emissions. The results can be used to improve understanding of the GHG emission characteristics and to reduce uncertainty of the national GHG inventory of dam reservoirs.

본 연구의 목적은 대청댐 저수지(금강수계)를 대상으로 G-res Tool을 적용하여 배출 경로별 온실가스(Greenhouse Gas, GHG)의 배출 특성과 댐 건설에 따른 담수 전과 후의 GHG 순 배출량(온실가스 발자국)을 산정하는데 있다. 아울러, 단위전력 생산당 탄소배출량(GHG 배출강도)을 평가하고 저수지 부영양화 상태(총인 농도)에 따른 GHG 배출량 변화의 민감도를 분석하여 수질과 배출량의 관계를 해석하였다. 대청댐 건설 후 연간 GHG 배출 플럭스는 262 gCO2eq/m2/yr이었으며, CO2와 CH4의 비율은 각각 45.7%와 54.2%이었다. 배출 경로별로는 CO2 확산이 가장 많았으며 다음으로 CH4의 확산, 방류 시 탈기, 기포 배출 순으로 산정되었다. 댐 건설 전과 후의 GHG 순 배출량은 담수 전 산림지로 분류된 토지 피복이 담수 후 저수구역으로 변경됨으로써 탄소 흡수효과가 상실되어 510 gCO2eq/m2/yr로 증가하였다. 대청댐의 GHG 배출강도는 전력밀도(저수면적당 발전용량)가 낮아 전세계 수력발전 중앙값보다 약 3.7배 많은 86.8 gCO2eq/kWh로 산정되었다. 그러나 이 값은 화석연료인 석탄의 배출강도보다 9.5배 작은 값에 해당한다는 점은 주목할 만하다. 또한 저수지의 총인 농도가 감소함에 따라 GHG 배출량도 감소하는 것을 확인하였다. 연구 결과는 댐 저수지의 온실가스 배출 특성에 대한 이해를 높이고, 국가 온실가스 인벤토리의 불확실성을 개선하는데 활용될 수 있다.

Keywords

Acknowledgement

본 연구는 한국수자원공사(K-water)의 개방형 혁신 R&D (21-CP-001) 사업의 일환으로 수행되었습니다.

References

  1. Ballantyne, A.P., Andres, R., Houghton, R., Stocker, B.D., Wanninkhof, R., Anderegg, W., Cooper, L.A., DeGrandpre, M., Tans, P.P., Miller, J.B., Alden, C., and White, J.W.C. (2015). "Audit of the global carbon budget: Estimate errors and their impact on uptake uncertainty." Biogeosciences, EGU, Vol. 12, pp. 2565-2584. https://doi.org/10.5194/bg-12-2565-2015
  2. Barros, N., Cole, J.J., Tranvik, L.J., Prairie, Y.T., Bastviken, D., Huszar, V.L.M., del Giorgio, P.A., and Roland, F. (2011). "Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude." Nature Geoscience, NP, Vol. 4, No. 9, pp. 593-596. https://doi.org/10.1038/ngeo1211
  3. Bastviken, D., Tranvik, L.J., Downing, J.A., Crill, P.M., Enrich-Prast, A. (2011). "Freshwater methane emissions offset the continental carbon sink." Science, AAAS, Vol. 331, pp. 50-56. https://doi.org/10.1126/science.1196808
  4. Beaulieu, J.J., DelSontro, T., and Downing, J.A. (2019). "Eutrophication will increase methane emissions from lakes and impoundments during the 21st century." Nature Communications, NP, Vol. 10, No. 1, 1375. doi: 10.1038/s41467-019-09100-5
  5. Choi, S.W., Kim, H,Y., and Kim, J. (2015). "Development of 'Carbon Footprint' concept and its utilization prospects in the agricultural and forestry sector." Korean Journal of Agricultural and Forest Meteorology, KSAFM, Vol. 17, No. 4, pp. 358-383. https://doi.org/10.5532/KJAFM.2015.17.4.358
  6. Chung, S.W., Ko, I.H., and Oh, J.K. (2005). "Simulations of temporal and spatial distributions of rainfall-induced turbidity flow in a reservoir using CE-QUAL-W2." Journal of Korea Water Resources Association, KWRA, Vol. 38, No. 8, pp. 655-664. https://doi.org/10.3741/JKWRA.2005.38.8.655
  7. Chung, S.W., Yoo, J.S., and Park, H.S. (2016). "Estimation of CO2 emission from a eutrophic reservoir in temperate region." Journal of Korean Society on Water Environment, KSWE, Vol. 32, No. 5, pp. 433-441. https://doi.org/10.15681/KSWE.2016.32.5.433
  8. Davidson, T.A., Audet, J., Svenning, J.C., Lauridsen, T.L., Sondergaard, M., Landkildehus, F., Larsen, S.E., and Jeppesen, E. (2015). "Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming." Global Change Biology, Wiley, Vol. 21, No. 12, pp. 4449-4463. https://doi.org/10.1111/gcb.13062
  9. Deemer, B.R., Harrison, J.A., Li, S., Beaulieu, J.J., DelSontro, T., Barros, N., Bezerra-Neto, J.F., Powers, S.M., Santos, M.A., and Vonk, J.A. (2016). "Greenhouse gas emissions from reservoir water surfaces: A new global synthesis." BioScience, AIBS, Vol. 66, No. 11, pp. 949-964. https://doi.org/10.1093/biosci/biw117
  10. Goldenfum, J.A. (2018). GHG measurement guidelines for freshwater reservoirs. The International Hydropower Association (IHA), London, UK, pp. 1-154.
  11. Golub, M. (2016). Controls on temporal variation in ecosystem-atmosphere carbon dioxide exchange in lakes and reservoirs, Department of Freshwater and Marine Sciences, Ph. D. Dissertation, University of Wisconsin-Madison, WV, U.S., pp. 1-152.
  12. Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017a). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment. Accessed 29 August 2022. .
  13. Gorelick, N., Hancher, H., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017b). "Google earth engine: Planetary-scale geospatial analysis for everyone." Remote Sensing of Environment, Elsevier, Vol. 202, pp. 18-27. https://doi.org/10.1016/j.rse.2017.06.031
  14. Harrison, J.A., Prairie, Y.T., MercierBlais, S., and Soued, C. (2021). "Year-2020 global distribution and pathways of reservoir methane and carbon dioxide emissions according to the greenhouse gas from reservoirs (G-res) model." Global Biogeochemical Cycles, AGU, Vol. 35, No. 6, pp. 81-95.
  15. Intergovernmental Panel on Climate Change (IPCC) (2006). IPCC guidelines for national greenhouse gas inventories, intergovernmental panel on climate change. United Nations Environment Programme, Geneva, Switzerland.
  16. Intergovernmental Panel on Climate Change (IPCC) (2011). IPCC special report on renewable energy sources and climate change mitigation. Prepared by Working Group III of the Intergovernmental Panel on Climate Change, Geneva, Switzerland.
  17. Intergovernmental Panel on Climate Change (IPCC) (2013). 2013 supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: Wetlands, Intergovernmental Panel on Climate Change, United Nations Environment Programme, Geneva, Switzerland.
  18. Intergovernmental Panel on Climate Change (IPCC) (2014). 2014 IPCC guidelines for national greenhouse gas inventories. Intergovernmental Panel on Climate Change. United Nations Environment Programme, Geneva, Switzerland.
  19. Intergovernmental Panel on Climate Change (IPCC) (2019). IPCC 2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventories. Intergovernmental Panel on Climate Change. United Nations Environment Programme, Geneva, Switzerland.
  20. International Energy Agency (IEA). (2015). CO2 emissions from fuel combustion. Paris, France, pp. 1-548.
  21. International Hydropower Association (IHA) (2021). Carbon emissions from hydropower reservoirs: Facts and myths, Accessed 5 August 2022, .
  22. Ion, I.V., and Ene, A. (2021). "Evaluation of greenhouse gas emissions from reservoirs: A review." Sustainability, MDPI, Vol. 13, No. 21, 11621. doi: 10.3390/su132111621.
  23. Jiang, T., Shen, Z., Liu, Y., and Hou, Y. (2018). "Carbon footprint assessment of four normal size hydropower stations in China." Sustainability, MDPI, Vol. 10, No. 6. 2018. doi: 10.3390/su10062018
  24. Kim, S.C., Choe, B.G., Park, R.G., Jeong, Y.G., Park, J.H., and Lee, Y.J. (2019). "Classification criteria for the activation of small hydro power generation." Water for Future, KWRA, Vol. 52, No. 1, pp. 62-73.
  25. Kim, S.I. (2021) "Estimation of the marginal abatement costs of projects: Malaysia." Journal of Climate Change Research, KSCC, Vol. 12, No. 5-2, pp. 601-611. https://doi.org/10.15531/KSCCR.2021.12.5.601
  26. Korea Energy Agency (KEA) (2015). Weekly brief issues of energy. Vol. 19, No. 86, accessed 24 August 2022, .
  27. Korea Meteorological Administration (KMA) (2015). Korea meteorological administration weather data service, South Korea, accessed 24 August 2022, .
  28. K-water (2006). The report of sedimentation quantity.
  29. K-water (2016). My-water, South Korea, accessed 24 August 2022, .
  30. K-water (2021). Multi-purpose dam practical handbook.
  31. Lee, H.S., Chung, S.W., Choi, J.K., Oh, D.G., and Heo, T.Y. (2011). "Analysis of spatial water quality variation in Daechung reservoir." Journal of Korean Society on Water Quality, KSWE, Vol. 27, No. 5, pp. 699-709.
  32. Louis, V.L., Kelly, C., Duchemin, E., Rudd, J., and Rosenberg, D. (2000). "Reservoir surfaces as sources of greenhouse gases to the atmosphere: A global estimate." BioScience, AIBS, Vol. 50, No. 9, pp. 766-775. https://doi.org/10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2
  33. Ministry of Environment (ME) (2004). Water resources management information system, South Korea, accessed 24 August 2022, .
  34. Ministry of Environment (ME) (2009). Water environment information system, South Korea, accessed 24 August 2022, .
  35. Ministry of Environment (ME) (2020). 2020 National greenhouse gas inventory report.
  36. Ministry of Environment (ME) (2021). Daecheong Lake Basin organic matter balance analysis and TOC management plan.
  37. Narvenkar, G., Naqvi, S.W.A., Kurian, S., Shenoy, D.M., Pratihary, A., Naik, H., Patil, S., Sarkar, A., and Gauns, M. (2013). "Dissolved methane in Indian freshwater reservoirs. Environmental monitoring and assessment." Environmental Monitoring and Assessment, Springer, Vol. 185, No. 8, pp. 6989-6999. https://doi.org/10.1007/s10661-013-3079-5
  38. Pacheco, F.S., Soares, M.C.S., Assireu, A.T., Curtarelli, M.P., Roland, F., Abril, G., and Stech, J.L. (2015). "The effects of river inflow and retention time on the spatial heterogeneity of chlorophyll and water - air CO2 fluxes in tropical hydropower reservoir." Biogeosciences, EGU, Vol. 12, No. 1, pp. 147-162. https://doi.org/10.5194/bg-12-147-2015
  39. Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L.., Canadell, J.G., et al. (2011). "A large and persistent carbon sink in the world's forests." Science, AAAS, Vol. 333, No. 6045, pp. 988-993. https://doi.org/10.1126/science.1201609
  40. Park, K.D., Jo, W.G., So, Y.H., and Kang, D.H. (2022). "Analysis of greenhouse gas research trends of hydropower dams: Focusing on foreign cases." Journal of Environmental Science International, KESS, Vol. 31, No. 2, pp. 195-213. https://doi.org/10.5322/JESI.2022.31.2.195
  41. Prairie, Y.T., Alm, J., Beaulieu, J. Barros, N., Battin, T., Cole, J., Giorgio, P., Delsontro, T., Guerin, F., Harby, A., Harrison, J., Mercier-Blai, S., Serca, D., Sobek, S., and Vachon, D. (2018). "Greenhouse gas emissions from freshwater reservoirs: What does the atmosphere see?" Ecosystems, Springer, Vol. 21, No. 5, pp. 1058-1071. https://doi.org/10.1007/s10021-017-0198-9
  42. Prairie, Y.T., Alm, J., Harby, A, Mercier-Blais, S., and Nahas, R. (2017a). The GHG Reservoir Tool (Gres) technical documentation v2.1 (2019-08-21). UNESCO/IHA research project on the GHG status of freshwater reservoirs. UNESCO/International Hydropower Association (IHA), London, UK.
  43. Prairie, Y.T., Alm, J., Harby, A, Mercier-Blais, S., and Nahas, R. (2017b). The GHG reservoir tool (G-res), UNESCO/IHA research project on the GHG status of freshwater reservoirs. Version 3.0. Accessed 09 August 2022, .
  44. Prairie, Y.T., Alm, J., Harby, A, Mercier-Blais, S., and Nahas, R. (2017c). User guidelines for the Earth Engine functionality v2.2 (Updated 27-10-2021). UNESCO/IHA research project on the GHG status of freshwater reservoirs. UNESCO/International Hydropower Association (IHA), London, UK.
  45. Prairie, Y.T., Mercier-Blais, S., Harrison, J.A., Soued, C., del Giorgio, P., Harby, A., and Nahas, R. (2021). "A new modelling framework to assess biogenic GHG emissions from reservoirs: The G-res tool." Environmental Modelling & Software, Elsevier, Vol. 143, 105117. doi: 10.1016/j.envsoft.2021.105117.
  46. Rasanen, T.A., Varis, O., Scherer, L., and Kummu, M. (2018). "Greenhouse gas emissions of hydropower in the Mekong River Basin." Environmental Research Letters, IOP, Vol. 13, No. 3, 034030. doi: 10.1088/1748-9326/aaa817.
  47. Rasilo, T., Prairie, Y.T., and del Giorgio, P.A. (2014). "Large-scale patterns in summer diffusive CH4 fluxes across boreal lakes, and contribution to diffusive C emissions." Global Change Biology, Vol. 1, pp. 1-16.
  48. Renewables Energy Policy Network for the 21st Century (REN21) (2021). Renewables 2021 global status report, Paris, France.
  49. U.S. Department of Agriculture (USDA) (2014). Keys to soil taxonomy, 12th edition, United States Department of Agriculture Natural Resources Conservation Service, Washington, D.C., U.S.
  50. Vachon, D., and Prairie, Y.T. (2013). "The ecosystem size and shape dependence of gas transfer velocity versus wind speed relationships in lakes." Canadian Journal of Fisheries and Aquatic Sciences, NSCC, Vol. 70, No. 12, pp. 1757-1764. https://doi.org/10.1139/cjfas-2013-0241
  51. West, W.E., Coloso, J.J., and Jones, S.E. (2012). "Effects of algal and terrestrial carbon on methane production rates and methanogen community structure in a temperate lake sediment." Freshwater Biology, Wiley, Vol. 57, No. 5, pp. 949-955. https://doi.org/10.1111/j.1365-2427.2012.02755.x
  52. West, W.E., Creamer, K.P., and Jones, S.E. (2016). "Productivity and depth regulate lake contributions to atmospheric methane." Limnology and Oceanography, ASLO, Vol. 61, No. 1, pp. 51-61.
  53. Whiting, G.J., and Chanton, J.P. (1993). "Primary production control of methane emission from wetlands." Nature, NP, Vol. 364, No. 6440, pp. 794-795. https://doi.org/10.1038/364794a0
  54. World Bank (2017). Greenhouse gases from reservoirs caused by biogeochemical processes. Washington, D.C., U.S.
  55. Worldwide Fund for Nature Korea (WWF-Korea) (2016). Korea ecological footprint report 2016: Measuring Korea's impact on nature.
  56. Yuguda, T.K., Li, Y., Luka, B.S., and Dzarma, G.W. (2020). "Incorporating reservoir greenhouse gas emissions into carbon footprint of sugar produced from irrigated sugarcane in northeastern Nigeria." Sustainability, MDPI, Vol. 2020, No. 12, 10380. doi: 10.3390/su122410380.
  57. Zou, H., and Hastie, T. (2005). "Regularization and variable selection via the elastic net." Journal of the Royal Statistical Society: Series B (Statistical Methodology), RSS, Vol. 67, No. 2, pp. 301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x