DOI QR코드

DOI QR Code

Developmental Programming by Perinatal Glucocorticoids

  • Hong, Jun Young (Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University)
  • Received : 2022.03.18
  • Accepted : 2022.06.15
  • Published : 2022.10.31

Abstract

Early-life environmental factors can have persistent effects on physiological functions by altering developmental procedures in various organisms. Recent experimental and epidemiological studies now further support the idea that developmental programming is also present in mammals, including humans, influencing long-term health. Although the mechanism of programming is still largely under investigation, the role of endocrine glucocorticoids in developmental programming is gaining interest. Studies found that perinatal glucocorticoids have a persistent effect on multiple functions of the body, including metabolic, behavioral, and immune functions, in adulthood. Several mechanisms have been proposed to play a role in long-term programming. In this review, recent findings on this topic are summarized and the potential biological rationale behind this phenomenon is discussed.

Keywords

Acknowledgement

I apologize for not being able to cite all seminal papers on this subject due to limited space. This work was supported by the Yonsei Research Fund (2021-22-0049), Yonsei Signature Research Cluster Program of 2022 (2022-22-0013), and the National Research Foundation of Korea (NRF), Ministry of Science, ICT, and Future Planning NRF-2022R1C1C1007283.

References

  1. Bakker, J.M., Kavelaars, A., Kamphuis, P.J., Cobelens, P.M., van Vugt, H.H., van Bel, F., and Heijnen, C.J. (2000). Neonatal dexamethasone treatment increases susceptibility to experimental autoimmune disease in adult rats. J. Immunol. 165, 5932-5937. https://doi.org/10.4049/jimmunol.165.10.5932
  2. Barbazanges, A., Piazza, P.V., Le Moal, M., and Maccari, S. (1996). Maternal glucocorticoid secretion mediates long-term effects of prenatal stress. J. Neurosci. 16, 3943-3949. https://doi.org/10.1523/JNEUROSCI.16-12-03943.1996
  3. Barker, D.J. (2007). The origins of the developmental origins theory. J. Intern. Med. 261, 412-417. https://doi.org/10.1111/j.1365-2796.2007.01809.x
  4. Barker, D.J.P. (2002). Fetal programming of coronary heart disease. Trends Endocrinol. Metab. 13, 364-368. https://doi.org/10.1016/S1043-2760(02)00689-6
  5. Bateson, P., Barker, D., Clutton-Brock, T., Deb, D., D'Udine, B., Foley, R.A., Gluckman, P., Godfrey, K., Kirkwood, T., Lahr, M.M., et al. (2004). Developmental plasticity and human health. Nature 430, 419-421. https://doi.org/10.1038/nature02725
  6. Bradbury, M.J., Akana, S.F., and Dallman, M.F. (1994). Roles of type I and II corticosteroid receptors in regulation of basal activity in the hypothalamopituitary-adrenal axis during the diurnal trough and the peak: evidence for a nonadditive effect of combined receptor occupation. Endocrinology 134, 1286-1296. https://doi.org/10.1210/endo.134.3.8119168
  7. Bramlage, C.P., Schlumbohm, C., Pryce, C.R., Mirza, S., Schnell, C., Amann, K., Amstrong, V.W., Eitner, F., Zapf, A., Feldon, J., et al. (2009). Prenatal dexamethasone exposure does not alter blood pressure and nephron number in the young adult marmoset monkey. Hypertension 54, 1115-1122. https://doi.org/10.1161/HYPERTENSIONAHA.109.136580
  8. Braun, T., Challis, J.R., Newnham, J.P., and Sloboda, D.M. (2013). Earlylife glucocorticoid exposure: the hypothalamic-pituitary-adrenal axis, placental function, and long-term disease risk. Endocr. Rev. 34, 885-916. https://doi.org/10.1210/er.2013-1012
  9. Catalani, A., Alema, G.S., Cinque, C., Zuena, A.R., and Casolini, P. (2011). Maternal corticosterone effects on hypothalamus-pituitary-adrenal axis regulation and behavior of the offspring in rodents. Neurosci. Biobehav. Rev. 35, 1502-1517. https://doi.org/10.1016/j.neubiorev.2010.10.017
  10. Catalani, A., Marinelli, M., Scaccianoce, S., Nicolai, R., Muscolo, L.A., Porcu, A., Koranyi, L., Piazza, P.V., and Angelucci, L. (1993). Progeny of mothers drinking corticosterone during lactation has lower stress-induced corticosterone secretion and better cognitive performance. Brain Res. 624, 209-215. https://doi.org/10.1016/0006-8993(93)90079-3
  11. Clark, P.M., Hindmarsh, P.C., Shiell, A.W., Law, C.M., Honour, J.W., and Barker, D.J.P. (1996). Size at birth and adrenocortical function in childhood. Clin. Endocrinol. (Oxf.) 45, 721-726. https://doi.org/10.1046/j.1365-2265.1996.8560864.x
  12. Crudo, A., Petropoulos, S., Moisiadis, V.G., Iqbal, M., Kostaki, A., Machnes, Z., Szyf, M., and Matthews, S.G. (2012). Prenatal synthetic glucocorticoid treatment changes DNA methylation states in male organ systems: multigenerational effects. Endocrinology 153, 3269-3283. https://doi.org/10.1210/en.2011-2160
  13. Dalziel, S.R., Walker, N.K., Parag, V., Mantell, C., Rea, H.H., Rodgers, A., and Harding, J.E. (2005). Cardiovascular risk factors after antenatal exposure to betamethasone: 30-year follow-up of a randomised controlled trial. Lancet 365, 1856-1862. https://doi.org/10.1016/S0140-6736(05)66617-2
  14. Davis, E.P., Glynn, L.M., Schetter, C.D., Hobel, C., Chicz-Demet, A., and Sandman, C.A. (2007). Prenatal exposure to maternal depression and cortisol influences infant temperament. J. Am. Acad. Child Adolesc. Psychiatry 46, 737-746. https://doi.org/10.1097/chi.0b013e318047b775
  15. De Kloet, E.R., Vreugdenhil, E., Oitzl, M.S., and Joels, M. (1998). Brain corticosteroid receptor balance in health and disease. Endocr. Rev. 19, 269-301.
  16. de Vries, A., Holmes, M.C., Heijnis, A., Seier, J.V., Heerden, J., Louw, J., Wolfe-Coote, S., Meaney, M.J., Levitt, N.S., and Seckl, J.R. (2007). Prenatal dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic-pituitary-adrenal axis function. J. Clin. Invest. 117, 1058-1067. https://doi.org/10.1172/JCI30982
  17. Eliwa, H., Brizard, B., Le Guisquet, A.M., Hen, R., Belzung, C., and Surget, A. (2021). Adult neurogenesis augmentation attenuates anhedonia and HPA axis dysregulation in a mouse model of chronic stress and depression. Psychoneuroendocrinology 124, 105097. https://doi.org/10.1016/j.psyneuen.2020.105097
  18. Erni, K., Shaqiri-Emini, L., La Marca, R., Zimmermann, R., and Ehlert, U. (2012). Psychobiological effects of prenatal glucocorticoid exposure in 10-year-old-children. Front. Psychiatry 3, 104.
  19. Figueroa, J.P., Rose, J.C., Massmann, G.A., Zhang, J., and Acuna, G. (2005). Alterations in fetal kidney development and elevations in arterial blood pressure in young adult sheep after clinical doses of antenatal glucocorticoids. Pediatr. Res. 58, 510-515. https://doi.org/10.1203/01.PDR.0000179410.57947.88
  20. Flanigan, C., Sheikh, A., Dunn Galvin, A., Brew, B.K., Almqvist, C., and Nwaru, B.I. (2018). Prenatal maternal psychosocial stress and offspring asthma and allergic diseases: a systematic review and meta-analysis. Clin. Exp. Allergy 48, 403-414. https://doi.org/10.1111/cea.13091
  21. French, N.P., Hagan, R., Evans, S.F., Godfrey, M., and Newnham, J.P. (1999). Repeated antenatal corticosteroids: size at birth and subsequent development. Am. J. Obstet. Gynecol. 180, 114-121. https://doi.org/10.1016/S0002-9378(99)70160-2
  22. Gilbert, S.F. (2005). Mechanisms for environmental regulation of gene expression: ecological aspects of animal development. J. Biosci. 30, 65-74. Glover, V., Miles, R., Matta, S., Modi, N., and Stevenson, J. (2005). https://doi.org/10.1007/BF02705151
  23. Glucocorticoid exposure in preterm babies predicts a salivary cortisol response to immunization at four months. Pediatr. Res. 58, 1233-1237.
  24. Gluckman, P.D. and Hanson, M. (2004). Living with the past: evolution, development, and patterns of disease. Science 305, 1733-1736. https://doi.org/10.1126/science.1095292
  25. Hanson, M.A. and Gluckman, P.D. (2014). Early developmental conditioning of later health and disease: physiology and pathophysiology? Physiol. Rev. 94, 1027-1076. https://doi.org/10.1152/physrev.00029.2013
  26. Hartmann, J., Bajaj, T., Klengel, C., Chatzinakos, C., Ebert, T., Dedic, N., McCullough, K.M., Lardenoije, R., Joels, M., Meijer, O.C., et al. (2021). Mineralocorticoid receptors dampen glucocorticoid receptor sensitivity to stress via regulation of FKBP5. Cell Rep. 35, 109185. https://doi.org/10.1016/j.celrep.2021.109185
  27. Henriksen, R., Rettenbacher, S., and Groothuis, T.G. (2011). Prenatal stress in birds: pathways, effects, functions, and perspectives. Neurosci. Biobehav. Rev. 35, 1484-1501. https://doi.org/10.1016/j.neubiorev.2011.04.010
  28. Hinde, K., Skibiel, A.L., Foster, A.B., Del Rosso, L., Mendoza, S.P., and Capitanio, J.P. (2015). Cortisol in the mother's milk during lactation reflects maternal life history and predicts infant temperament. Behav. Ecol. 26, 269-281. https://doi.org/10.1093/beheco/aru186
  29. Hodge, R.D., Bakken, T.E., Miller, J.A., Smith, K.A., Barkan, E.R., Graybuck, L.T., Close, J.L., Long, B., Johansen, N., Penn, O., et al. (2019). Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61-68. https://doi.org/10.1038/s41586-019-1506-7
  30. Hong, J.Y., Lim, J., Carvalho, F., Cho, J.Y., Vaidyanathan, B., Yu, S., Annicelli, C., Ip, W.K.E., and Medzhitov, R. (2020). Long-term programming of CD8 T cell immunity by perinatal exposure to glucocorticoids. Cell 180, 847-861. e15. https://doi.org/10.1016/j.cell.2020.02.018
  31. Kay, G., Tarcic, N., Poltyrev, T., and Weinstock, M. (1998). Prenatal stress suppresses immune function in rats. Physiol. Behav. 63, 397-402. https://doi.org/10.1016/S0031-9384(97)00456-3
  32. Kelly-Irving, M., Lepage, B., Dedieu, D., Lacey, R., Cable, N., Bartley, M., Blane, D., Grosclaude, P., Lang, T., and Delpierre, C. (2013). Childhood adversity as a risk factor for cancer: findings from the 1958 British Birth Cohort Study. BMC Public Health 13, 767. https://doi.org/10.1186/1471-2458-13-767
  33. Kelly, B.A., Lewandowski, A.J., Worton, S.A., Davis, E.F., Lazdam, M., Francis, J., Neubauer, S., Lucas, A., Singhal, A., and Leeson, P. (2012). Antenatal glucocorticoid exposure and long-term alterations in aortic function and glucose metabolism. Pediatrics 129, e1282-e1290. https://doi.org/10.1542/peds.2011-3175
  34. Kuo, T., Harris, C.A., and Wang, J.C. (2013). Metabolic function of glucocorticoid receptors in skeletal muscle. Mol. Cell. Endocrinol. 380, 79-88. https://doi.org/10.1016/j.mce.2013.03.003
  35. Kuo, T., McQueen, A., Chen, T.C., and Wang, J.C. (2015). Regulation of glucose homeostasis by glucocorticoids. Adv. Exp. Med. Biol. 872, 99-126. https://doi.org/10.1007/978-1-4939-2895-8_5
  36. Levitt, N.S., Lindsay, R.S., Holmes, M.C., and Seckl, J. (1996). Dexamethasone in the last week of pregnancy attenuated hippocampal glucocorticoid receptor gene expression and elevated blood pressure in adult offspring of rats. Neuroendocrinology 64, 412-418. https://doi.org/10.1159/000127146
  37. Lupien, S.J., McEwen, B.S., Gunnar, M.R., and Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10, 434-445. https://doi.org/10.1038/nrn2639
  38. Macfarlane, D.P., Forbes, S., and Walker, B.R. (2008). Glucocorticoids and fatty acid metabolism in humans: fuelling fat redistribution in metabolic syndrome. J. Endocrinol. 197, 189-204. https://doi.org/10.1677/JOE-08-0054
  39. Mairesse, J., Lesage, J., Breton, C., Breant, B., Hahn, T., Darnaudery, M., Dickson, S.L., Seckl, J., Blondeau, B., Vieau, D., et al. (2007). Maternal stress alters endocrine function of the feto-placental unit in rats. Am. J. Physiol. Endocrinol. Metab. 292, E1526-E1533. https://doi.org/10.1152/ajpendo.00574.2006
  40. Matthews, S.G. (2000). Antenatal glucocorticoids and programming of the developing CNS. Pediatr. Res. 47, 291-300. https://doi.org/10.1203/00006450-200003000-00003
  41. McEwen, B.S., Eiland, L., Hunter, R.G., and Miller, M.M. (2012). Stress and anxiety: structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology 62, 3-12. https://doi.org/10.1016/j.neuropharm.2011.07.014
  42. McMullen, S. and Mostyn, A. (2009). Animal models for the study of the developmental origins of health and disease: workshop on nutritional models of the developmental origins of adult health and disease. Proc. Nutr. Soc. 68, 306-320. https://doi.org/10.1017/S0029665109001396
  43. Moore, S.E., Collinson, A.C., Tamba N'Gom, P., Aspinall, R., and Prentice, A.M. (2006). Early immunological development and mortality from infectious diseases later in life. Proc. Nutr. Soc. 65, 311-318. https://doi.org/10.1079/PNS2006503
  44. Nagano, M., Ozawa, H., and Suzuki, H. (2008). Prenatal dexamethasone exposure affects anxiety-like behavior and the neuroendocrine system in an age-dependent manner. Neurosci. Res. 60, 364-371. https://doi.org/10.1016/j.neures.2007.12.005
  45. Neal, C.R., Jr., Weidemann, G., Kabbaj, M., and Vazquez, D.M. (2004). Effects of neonatal dexamethasone exposure on growth and neurological development in adult rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R375-R385. https://doi.org/10.1152/ajpregu.00012.2004
  46. Nyirenda, M.J., Dean, S., Lyons, V., Chapman, K.E., and Seckl, J.R. (2006). Prenatal programming of hepatocyte nuclear factor 4α in rats: a key mechanism in the fetal origins of hyperglycemia? Diabetologia 49, 1412-1420. https://doi.org/10.1007/s00125-006-0188-5
  47. Nyirenda, M.J., Lindsay, R.S., Kenyon, C.J., Burchell, A., and Seckl, J.R. (1998). Glucocorticoid exposure during late gestation permanently programs rat hepatic phosphoenolpyruvate carboxykinase and glucocorticoid receptor expression and causes glucose intolerance in adult offspring. J. Clin. Invest. 101, 2174-2181. https://doi.org/10.1172/JCI1567
  48. Nyirenda, M.J., Welberg, L.A., and Seckl, J.R. (2001). Programming hyperglycemia in rats through prenatal exposure to glucocorticoid-fetal effects or maternal influence? J. Endocrinol. 170, 653-660. https://doi.org/10.1677/joe.0.1700653
  49. Padgett, D.A. and Glaser, R. (2003). How stress influences the immune response. Trends Immunol. 24, 444-448. https://doi.org/10.1016/S1471-4906(03)00173-X
  50. Peckett, A.J., Wright, D.C., and Riddell, M.C. (2011). The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism 60, 1500-1510. https://doi.org/10.1016/j.metabol.2011.06.012
  51. Phillips, D.I., Barker, D.J., Fall, C.H., Seckl, J.R., Whorwood, C.B., Wood, P.J., and Walker, B.R. (1998). Elevated plasma cortisol concentrations: a link between low birth weight and insulin resistance syndrome? J. Clin. Endocrinol. Metab. 83, 757-760.
  52. Reyes-Contreras, M., Glauser, G., Rennison, D.J., and Taborsky, B. (2019). Early life manipulation of cortisol and its receptors alters stress axis programming and social competence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180119. https://doi.org/10.1098/rstb.2018.0119
  53. Reynolds, R.M., Walker, B.R., Syddall, H.E., Andrew, R., Wood, P.J., Whorwood, C.B., and Phillips, D.I. (2001). Altered control of cortisol secretion in adult men with low birth weight and cardiovascular risk factors. J. Clin. Endocrinol. Metab. 86, 245-250.
  54. Ruthsatz, K., Dausmann, K.H., Drees, C., Becker, L.I., Hartmann, L., Reese, J., Reinhardt, S., Robinson, T., Sabatino, N.M., Peck, M.A., et al. (2020). Altered thyroid hormone levels affect the capacity for temperature-induced developmental plasticity in larvae of Rana temporaria and Xenopus laevis. J. Therm. Biol. 90, 102599. https://doi.org/10.1016/j.jtherbio.2020.102599
  55. Sasaki, A., Nakagawa, I., and Kajimoto, M. (1982). Effect of protein nutrition throughout gestation and lactation on the growth, morbidity, and life span of rat progeny. J. Nutr. Sci. Vitaminol. (Tokyo) 28, 543-555. https://doi.org/10.3177/jnsv.28.543
  56. Schloesser, R.J., Manji, H.K., and Martinowich, K. (2009). Suppression of adult neurogenesis leads to an increased hypothalamic-pituitary-adrenal axis response. Neuroreport 20, 553-557. https://doi.org/10.1097/WNR.0b013e3283293e59
  57. Schmidt, M.V. (2011). Animal models of depression and mismatch hypothesis of disease. Psychoneuroendocrinology 36, 330-338. https://doi.org/10.1016/j.psyneuen.2010.07.001
  58. Scott, G.R. and Johnston, I.A. (2012). The temperature during embryonic development has persistent effects on the thermal acclimation capacity of zebrafish. Proc. Natl. Acad. Sci. U. S. A. 109, 14247-14252. https://doi.org/10.1073/pnas.1205012109
  59. Shimba, A., Cui, G., Tani-Ichi, S., Ogawa, M., Abe, S., Okazaki, F., Kitano, S., Miyachi, H., Yamada, H., Hara, T., et al. (2018). Glucocorticoids drive diurnal oscillations in T cell distribution and response by inducing the Interleukin-7 receptor and CXCR4. Immunity 48, 286-298.e6. https://doi.org/10.1016/j.immuni.2018.01.004
  60. Sugden, M.C., Langdown, M.L., Munns, M.J., and Holness, M. (2001). Maternal glucocorticoid treatment modulates placental leptin and leptin receptor expression and materno-fetal leptin physiology during late pregnancy and elicits hypertension associated with hyperleptinemia in early growth-retarded adult offspring. Eur. J. Endocrinol. 145, 529-539.
  61. Surjit, M., Ganti, K.P., Mukherji, A., Ye, T., Hua, G., Metzger, D., Li, M., and Chambon, P. (2011). Widespread negative response elements mediate direct repression by agonist-ligand glucocorticoid receptor. Cell 145, 224-241. https://doi.org/10.1016/j.cell.2011.03.027
  62. van Bodegom, M., Homberg, J.R., and Henckens, M. (2017). Modulation of the hypothalamic-pituitary-adrenal axis by early life stress exposure. Front. Cell. Neurosci. 11, 87.
  63. van de Loo, K.F., van Gelder, M.M., Roukema, J., Roeleveld, N., Merkus, P.J., and Verhaak, C.M. (2016). Prenatal maternal psychological stress, childhood asthma, and wheezing: a meta-analysis. Eur. Respir. J. 47, 133-146. https://doi.org/10.1183/13993003.00299-2015
  64. Venihaki, M., Carrigan, A., Dikkes, P., and Majzoub, J.A. (2000). Circadian rise in maternal glucocorticoids prevents pulmonary dysplasia in fetal mice with adrenal insufficiency. Proc. Natl. Acad. Sci. U. S. A. 97, 7336-7341. https://doi.org/10.1073/pnas.97.13.7336
  65. Wang, A., Luan, H.H., and Medzhitov, R. (2019). An evolutionary perspective on immunometabolism. Science 363, eaar3932. https://doi.org/10.1126/science.aar3932
  66. Weaver, I.C., Cervoni, N., Champagne, F.A., D'Alessio, A.C., Sharma, S., Seckl, J.R., Dymov, S., Szyf, M., and Meaney, M.J. (2004). Epigenetic programming by maternal behavior. Nat. Neurosci. 7, 847-854. https://doi.org/10.1038/nn1276
  67. Welberg, L.A., Seckl, J.R., and Holmes, M.C. (2000). Inhibition of 11betahydroxysteroid dehydrogenase, the feto-placental barrier to maternal glucocorticoids, permanently programs amygdala GR mRNA expression and anxiety-like behavior in offspring. Eur. J. Neurosci. 12, 1047-1054. https://doi.org/10.1046/j.1460-9568.2000.00958.x
  68. Welberg, L.A., Seckl, J.R., and Holmes, M.C. (2001). Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophinreleasing hormone: possible implications for behavior. Neuroscience 104, 71-79. https://doi.org/10.1016/S0306-4522(01)00065-3
  69. Zhang, T.Y., Labonte, B., Wen, X.L., Turecki, G., and Meaney, M.J. (2013). Epigenetic mechanisms for early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans. Neuropsychopharmacology 38, 111-123. https://doi.org/10.1038/npp.2012.149