DOI QR코드

DOI QR Code

Fatty Exosomes Aggravate Metabolic Disorders

  • Jung, Young Hyun (Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University) ;
  • Han, Ho Jae (Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University)
  • Received : 2022.08.29
  • Accepted : 2022.09.26
  • Published : 2022.10.31

Abstract

Keywords

Acknowledgement

This research was supported by National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF2020R1A2B5B02002442) and BK21 Four Future Veterinary Medicine Leading Education & Research Center.

References

  1. Ahn, S.H., Ryu, S.W., Choi, H., You, S., Park, J., and Choi, C. (2022). Manufacturing therapeutic exosomes: from bench to industry. Mol. Cells 45, 284-290. https://doi.org/10.14348/molcells.2022.2033
  2. Castano, C., Kalko, S., Novials, A., and Parrizas, M. (2018). Obesity-associated exosomal miRNAs modulate glucose and lipid metabolism in mice. Proc. Natl. Acad. Sci. U. S. A. 115, 12158-12163. https://doi.org/10.1073/pnas.1808855115
  3. Choi, E.J., Jeon, C.H., Park, D.H., and Kwon, T.H. (2020). Allithiamine exerts therapeutic effects on sepsis by modulating metabolic flux during dendritic cell activation. Mol. Cells 43, 964-973. https://doi.org/10.14348/molcells.2020.0198
  4. Jafari, N., Llevenes, P., and Denis, G.V. (2022). Exosomes as novel biomarkers in metabolic disease and obesity-related cancers. Nat. Rev. Endocrinol. 18, 327-328. https://doi.org/10.1038/s41574-022-00666-7
  5. Kita, S., Maeda, N., and Shimomura, I. (2019). Interorgan communication by exosomes, adipose tissue, and adiponectin in metabolic syndrome. J. Clin. Invest. 129, 4041-4049. https://doi.org/10.1172/JCI129193
  6. Kumar, A., Ren, Y., Sundaram, K., Mu, J., Sriwastva, M.K., Dryden, G.W., Lei, C., Zhang, L., Yan, J., Zhang, X., et al. (2021a). miR-375 prevents high-fat diet-induced insulin resistance and obesity by targeting the aryl hydrocarbon receptor and bacterial tryptophanase (tnaA) gene. Theranostics 11, 4061-4077. https://doi.org/10.7150/thno.52558
  7. Kumar, A., Sundaram, K., Mu, J., Dryden, G.W., Sriwastva, M.K., Lei, C., Zhang, L., Qiu, X., Xu, F., Yan, J., et al. (2021b). High-fat diet-induced upregulation of exosomal phosphatidylcholine contributes to insulin resistance. Nat. Commun. 12, 213. https://doi.org/10.1038/s41467-020-20500-w
  8. Mei, R., Qin, W., Zheng, Y., Wan, Z., and Liu, L. (2022). Role of adipose tissue derived exosomes in metabolic disease. Front. Endocrinol. (Lausanne) 13, 873865. https://doi.org/10.3389/fendo.2022.873865
  9. Roh, E., Kwak, S.H., Jung, H.S., Cho, Y.M., Pak, Y.K., Park, K.S., Kim, S.Y., and Lee, H.K. (2015). Serum aryl hydrocarbon receptor ligand activity is associated with insulin resistance and resulting type 2 diabetes. Acta Diabetol. 52, 489-495. https://doi.org/10.1007/s00592-014-0674-z
  10. Van den Bossche, J. (2020). Fatty exosomes hamper antitumor immunity. Sci. Transl. Med. 12, eabf4685. https://doi.org/10.1126/scitranslmed.abf4685
  11. Wu, H. and Ballantyne, C.M. (2020). Metabolic inflammation and insulin resistance in obesity. Circ. Res. 126, 1549-1564. https://doi.org/10.1161/CIRCRESAHA.119.315896
  12. Yin, X., Zeng, W., Wu, B., Wang, L., Wang, Z., Tian, H., Wang, L., Jiang, Y., Clay, R., Wei, X., et al. (2020). PPARα inhibition overcomes tumor-derived exosomal lipid-induced dendritic cell dysfunction. Cell Rep. 33, 108278. https://doi.org/10.1016/j.celrep.2020.108278
  13. Zhang, J., Tan, J., Wang, M., Wang, Y., Dong, M., Ma, X., Sun, B., Liu, S., Zhao, Z., Chen, L., et al. (2021). Lipid-induced DRAM recruits STOM to lysosomes and induces LMP to promote exosome release from hepatocytes in NAFLD. Sci. Adv. 7, eabh1541. https://doi.org/10.1126/sciadv.abh1541