DOI QR코드

DOI QR Code

A Novel Therapeutic Effect of a New Variant of CTLA4-Ig with Four Antennas That Are Terminally Capped with Sialic Acid in the CTLA4 Region

  • Piao, Yongwei (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Yun, So Yoon (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Kim, Hee Soo (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Park, Bo Kyung (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Ha, Hae Chan (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Fu, Zhicheng (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Jang, Ji Min (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Back, Moon Jung (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Shin, In Chul (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Won, Jong Hoon (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University) ;
  • Kim, Dae Kyong (Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University)
  • Received : 2022.05.21
  • Accepted : 2022.07.16
  • Published : 2022.11.01

Abstract

Rheumatoid arthritis (RA) is a multifactorial immune-mediated disease, the pathogenesis of which involves different cell types. T-cell activation plays an important role in RA. Therefore, inhibiting T-cell activation is one of the current therapeutic strategies. Cytotoxic T-lymphocyte antigen 4-immunoglobulin (CTLA4-Ig), also known as abatacept, reduces cytokine secretion by inhibiting T-cell activation. To achieve a homeostatic therapeutic effect, CTLA4-Ig has to be administered repeatedly over several weeks, which limits its applicability in RA treatment. To overcome this limitation, we increased the number of sialic acid-capped antennas by genetically engineering the CTLA4 region to increase the therapeutic effect of CTLA4-Ig. N-acetylglucosaminyltransferase (GnT) and α2,6-sialyltransferase (α2,6-ST) were co-overexpressed in Chinese hamster ovary (CHO) cells to generate a highly sialylated CTLA4-Ig fusion protein, named ST6. The therapeutic and immunogenic effects of ST6 and CTLA4-Ig were compared. ST6 dose-dependently decreased paw edema in a mouse model of collagen-induced arthritis and reduced cytokine levels in a co-culture cell assay in a similar manner to CTLA4-Ig. ST6- and CTLA4-Ig-induced T cell-derived cytokines were examined in CD4 T cells isolated from peripheral blood mononuclear cells after cell killing through irradiation followed by flow- and magnetic-bead-assisted separation. Interestingly, compared to CTLA4-Ig, ST6 was substantially less immunogenic and more stable and durable. Our data suggest that ST6 can serve as a novel, less immunogenic therapeutic strategy for patients with RA.

Keywords

Acknowledgement

This study was supported by a Chung-Ang University Young Scientist Scholarship in 2015. The samples used in this study were provided by Inha University (ICN, KR). This study was supported by a grant from the National Research Foundation of Korea (NRF-2017M3A9D8048414) funded by the Korean government (Ministry of Science and ICT).

References

  1. Alegre, M. L., Frauwirth, K. A. and Thompson, C. B. (2001) T-cell regulation by CD28 and CTLA-4. Nat. Rev. Immunol. 1, 220-228. https://doi.org/10.1038/35105024
  2. Anderson, G. D., Hauser, S. D., Mcgarity, K. L., Bremer, M. E., Isakson, P. C. and Gregory, S. A. (1996) Selective inhibition of cyclooxygenase (COX)-2 reverses inflammation and expression of COX-2 and interleukin 6 in rat adjuvant arthritis. J. Clin. Invest. 97, 2672-2679. https://doi.org/10.1172/JCI118717
  3. Blumenauer, B., Cranney, A., Clinch, J. and Tugwell, P. (2003) Quality of life in patients with rheumatoid arthritis : which drugs might make a difference? Pharmacoeconomics 21, 927-940. https://doi.org/10.2165/00019053-200321130-00002
  4. Bora de Oliveira, K., Spencer, D., Barton, C. and Agarwal, N. (2017) Site-specific monitoring of N-glycosylation profiles of a CTLA4-Fcfusion protein from the secretory pathway to the extracellular environment. Biotechnol. Bioeng. 114, 1550-1560. https://doi.org/10.1002/bit.26266
  5. Brand, D. D., Latham, K. A. and Rosloniec, E. F. (2007) Collagen-induced arthritis. Nat. Protoc. 2, 1269-1275. https://doi.org/10.1038/nprot.2007.173
  6. Choy, E. H. and Panayi, G. S. (2001) Cytokine pathways and joint inflammation in rheumatoid arthritis. N. Engl. J. Med. 344, 907-916. https://doi.org/10.1056/NEJM200103223441207
  7. Chung, C. Y., Wang, Q., Yang, S., Yin, B., Zhang, H. and Betenbaugh, M. (2017) Integrated genome and protein editing swaps alpha-2,6 sialylation for alpha-2,3 sialic acid on recombinant antibodies from CHO. Biotechnol. J. 12, 1600502. https://doi.org/10.1002/biot.201600502
  8. Cui, J., Yu, J., Xu, H., Zou, Y., Zhang, H., Chen, S., Le, S., Zhao, J., Jiang, L., Xia, J. and Wu, J. (2020) Autophagy-lysosome inhibitor chloroquine prevents CTLA-4 degradation of T cells and attenuates acute rejection in murine skin and heart transplantation. Theranostics 10, 8051-8060. https://doi.org/10.7150/thno.43507
  9. Cutolo, M. (1999) Macrophages as effectors of the immunoendocrinologic interactions in autoimmune rheumatic diseases. Ann. N. Y. Acad. Sci. 876, 32-41. https://doi.org/10.1111/j.1749-6632.1999.tb07620.x
  10. Cutolo, M. and Nadler, S. G. (2013) Advances in CTLA-4-Ig-mediated modulation of inflammatory cell and immune response activation in rheumatoid arthritis. Autoimmun. Rev. 12, 758-767. https://doi.org/10.1016/j.autrev.2013.01.001
  11. Cutolo, M., Sulli, A. and Pincus, T. (2015) Circadian use of glucocorticoids in rheumatoid arthritis. Neuroimmunomodulation 22, 33-39. https://doi.org/10.1159/000362733
  12. Cutolo, M., Soldano, S., Gotelli, E., Montagna, P., Campitiello, R., Paolino, S., Pizzorni, C., Sulli, A., Smith, V. and Tardito, S. (2021) CTLA4-Ig treatment induces M1-M2 shift in cultured monocyte-derived macrophages from healthy subjects and rheumatoid arthritis patients. Arthritis Res. Ther. 23, 306. https://doi.org/10.1186/s13075-021-02691-9
  13. Davignon, J. L., Rauwel, B., Degboe, Y., Constantin, A., Boyer, J. F., Kruglov, A. and Cantagrel, A. (2018) Modulation of T-cell responses by anti-tumor necrosis factor treatments in rheumatoid arthritis: a review. Arthritis Res. Ther. 20, 229. https://doi.org/10.1186/s13075-018-1725-6
  14. Furuzawa-Carballeda, J., Lima, G., Uribe-Uribe, N., Avila-Casado, C., Mancilla, E., Morales-Buenrostro, L. E., Perez-Garrido, J., Perez, M., Cardenas, G., Llorente, L. and Alberu, J. (2010) High levels of IDO-expressing CD16+ peripheral cells, and Tregs in graft biopsies from kidney transplant recipients under belatacept treatment. Transplant. Proc. 42, 3489-3496. https://doi.org/10.1016/j.transproceed.2010.08.037
  15. Goldring, S. R. and Gravallese, E. M. (2000) Pathogenesis of bone erosions in rheumatoid arthritis. Curr. Opin. Rheumatol. 12, 195-199. https://doi.org/10.1097/00002281-200005000-00006
  16. Guse, A. H., da Silva, C. P., Berg, I., Skapenko, A. L., Weber, K., Heyer, P., Hohenegger, M., Ashamu, G. A., Schulze-Koops, H., Potter, B. V. and Mayr, G. W. (1999) Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature 398, 70-73. https://doi.org/10.1038/18024
  17. Hamann, D., Baars, P. A., Rep, M. H., Hooibrink, B., Kerkhof-Garde, S. R., Klein, M. R. and van Lier, R. A. (1997) Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med. 186, 1407-1418. https://doi.org/10.1084/jem.186.9.1407
  18. Hoffman, R. W. (2001) T cells in the pathogenesis of systemic lupus erythematosus. Front. Biosci. 6, D1369- D1378. https://doi.org/10.2741/Hoffman
  19. Huang, J., Fu, X., Chen, X., Li, Z., Huang, Y. and Liang, C. (2021) Promising therapeutic targets for treatment of rheumatoid arthritis. Front. Immunol. 12, 686155. https://doi.org/10.3389/fimmu.2021.686155
  20. Jang, D. I., Lee, A. H., Shin, H. Y., Song, H. R., Park, J. H., Kang, T. B., Lee, S. R. and Yang, S. H. (2021) The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int. J. Mol. Sci. 22, 2719. https://doi.org/10.3390/ijms22052719
  21. Jing, Y., Qian, Y. and Li, Z. J. (2010) Sialylation enhancement of CTLA4-Ig fusion protein in Chinese hamster ovary cells by dexamethasone. Biotechnol. Bioeng. 107, 488-496. https://doi.org/10.1002/bit.22827
  22. Kaine, J., Gladstein, G., Strusberg, I., Robles, M., Louw, I., Gujrathi, S., Pappu, R., Delaet, I., Pans, M. and Ludivico, C. (2012) Evaluation of abatacept administered subcutaneously in adults with active rheumatoid arthritis: impact of withdrawal and reintroduction on immunogenicity, efficacy and safety (phase Iiib ALLOW study). Ann. Rheum. Dis. 71, 38-44. https://doi.org/10.1136/annrheumdis-2011-200344
  23. Kitaori, T., Ito, H., Yoshitomi, H., Aoyama, T., Fujii, T., Mimori, T. and Nakamura, T. (2009) Severe erosive arthropathy requiring surgical treatments in systemic lupus erythematosus. Mod. Rheumatol. 19, 431-436. https://doi.org/10.3109/s10165-009-0171-3
  24. Kremer, J. M., Westhovens, R., Leon, M., Di Giorgio, E., Alten, R., Steinfeld, S., Russell, A., Dougados, M., Emery, P., Nuamah, I. F., Williams, G. R., Becker, J. C., Hagerty, D. T. and Moreland, L. W. (2003) Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N. Engl. J. Med. 349, 1907-1915. https://doi.org/10.1056/NEJMoa035075
  25. Lagana, B., Vinciguerra, M. and D'Amelio, R. (2009) Modulation of T-cell co-stimulation in rheumatoid arthritis: clinical experience with abatacept. Clin. Drug Investig. 29, 185-202. https://doi.org/10.2165/00044011-200929030-00005
  26. Li, P., Zheng, Y. and Chen, X. (2017) Drugs for autoimmune inflammatory diseases: from small molecule compounds to anti-TNF biologics. Front. Pharmacol. 8, 460. https://doi.org/10.3389/fphar.2017.00460
  27. Lim, J. H., Cha, H. M., Park, H., Kim, H. H., Kim, D. I. (2017) Engineering human-like sialylation in CHO cells producing hCTLA4-Ig by overexpressing α2,6-sialyltransferase. KSBB J. 32, 193-198. https://doi.org/10.7841/ksbbj.2017.32.3.193
  28. Lim, J. H., Kim, J., Cha, H. M., Kang, S. H., Han, H. J., Ji, M., Cheon, S. H., Kang, M., Kim, H. H. and Kim, D. I. (2022) Establishment of a glycoengineered CHO cell line for enhancing antennary structure and sialylation of CTLA4-Ig. Enzyme Microb. Technol. 157, 110007. https://doi.org/10.1016/j.enzmictec.2022.110007
  29. Liu, R., Hao, D., Xu, W., Li, J., Li, X., Shen, D., Sheng, K., Zhao, L., Xu, W., Gao, Z., Zhao, X., Liu, Q. and Zhang, Y. (2019) β-Sitosterol modulates macrophage polarization and attenuates rheumatoid inflammation in mice. Pharm. Biol. 57, 161-168. https://doi.org/10.1080/13880209.2019.1577461
  30. Lo, B., Zhang, K., Lu, W., Zheng, L., Zhang, Q., Kanellopoulou, C., Zhang, Y., Liu, Z., Fritz, J. M., Marsh, R., Husami, A., Kissell, D., Nortman, S., Chaturvedi, V., Haines, H., Young, L. R., Mo, J., Filipovich, A. H., Bleesing, J. J., Mustillo, P., Stephens, M., Rueda, C. M., Chougnet, C. A., Hoebe, K., Mcelwee, J., Hughes, J. D., Karakoc-Aydiner, E., Matthews, H. F., Price, S., Su, H. C., Rao, V. K., Lenardo, M. J. and Jordan, M. B. (2015) AUTOIMMUNE DISEASE. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 349, 436-440.
  31. Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A. and Locati, M. (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677-686. https://doi.org/10.1016/j.it.2004.09.015
  32. Mccann, F. E., Perocheau, D. P., Ruspi, G., Blazek, K., Davies, M. L., Feldmann, M., Dean, J. L., Stoop, A. A. and Williams, R. O. (2014) Selective tumor necrosis factor receptor I blockade is antiinflammatory and reveals immunoregulatory role of tumor necrosis factor receptor II in collagen-induced arthritis. Arthritis Rheumatol. 66, 2728-2738. https://doi.org/10.1002/art.38755
  33. Mellor, A. L. and Munn, D. H. (1999) Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol. Today 20, 469-473. https://doi.org/10.1016/S0167-5699(99)01520-0
  34. Mills, C. D. (2015) Anatomy of a discovery: M1 and M2 macrophages. Front. Immunol. 6, 212.
  35. Mustafa, G., Mahrosh, H. S. and Arif, R. (2021) In silico characterization of growth differentiation factors as inhibitors of TNF-alpha and IL-6 in immune-mediated inflammatory disease rheumatoid arthritis. Biomed. Res. Int. 2021, 5538535.
  36. Ngantung, F. A., Miller, P. G., Brushett, F. R., Tang, G. L. and Wang, D. I. (2006) RNA interference of sialidase improves glycoprotein sialic acid content consistency. Biotechnol. Bioeng. 95, 106-119. https://doi.org/10.1002/bit.20997
  37. Ozen, G., Pedro, S., Schumacher, R., Simon, T. A. and Michaud, K. (2019) Safety of abatacept compared with other biologic and conventional synthetic disease-modifying antirheumatic drugs in patients with rheumatoid arthritis: data from an observational study. Arthritis Res. Ther. 21, 141. https://doi.org/10.1186/s13075-019-1921-z
  38. Page, T. H., Turner, J. J., Brown, A. C., Timms, E. M., Inglis, J. J., Brennan, F. M., Foxwell, B. M., Ray, K. P. and Feldmann, M. (2010) Nonsteroidal anti-inflammatory drugs increase TNF production in rheumatoid synovial membrane cultures and whole blood. J. Immunol. 185, 3694-3701. https://doi.org/10.4049/jimmunol.1000906
  39. Rowshanravan, B., Halliday, N. and Sansom, D. M. (2018) CTLA-4: a moving target in immunotherapy. Blood 131, 58-67. https://doi.org/10.1182/blood-2017-06-741033
  40. Ruderman, E. M. and Pope, R. M. (2005) The evolving clinical profile of abatacept (CTLA4-Ig): a novel co-stimulatory modulator for the treatment of rheumatoid arthritis. Arthritis Res. Ther. 7 Suppl 2, S21- S25. https://doi.org/10.1186/ar1688
  41. Sharpe, A. H. (2009) Mechanisms of costimulation. Immunol. Rev. 229, 5-11. https://doi.org/10.1111/j.1600-065X.2009.00784.x
  42. Smith, K. A. (1988) Interleukin-2: inception, impact, and implications. Science 240, 1169-1176. https://doi.org/10.1126/science.3131876
  43. Smolen, J. S. and Maini, R. N. (2006) Interleukin-6: a new therapeutic target. Arthritis Res. Ther. 8 Suppl 2, S5. https://doi.org/10.1186/ar1969
  44. Song, H. P., Li, X., Yu, R., Zeng, G., Yuan, Z. Y., Wang, W., Huang, H. Y. and Cai, X. (2015) Phenotypic characterization of type II collagen-induced arthritis in Wistar rats. Exp. Ther. Med. 10, 1483-1488. https://doi.org/10.3892/etm.2015.2667
  45. Szekanecza, Z. and Koch, A. E. (2005) Macrophages and their products in rheumatoid arthritis. Curr. Opin. Rheumatol. 19, 289-295. https://doi.org/10.1097/BOR.0b013e32805e87ae
  46. Tian, C., Bagley, J. and Iacomini, J. (2002) Expression of antigen on mature lymphocytes is required to induce T cell tolerance by gene therapy. J. Immunol. 169, 3771-3776. https://doi.org/10.4049/jimmunol.169.7.3771
  47. Udalova, I. A., Mantovani, A. and Feldmann, M. (2016) Macrophage heterogeneity in the context of rheumatoid arthritis. Nat. Rev. Rheumatol. 12, 472-485. https://doi.org/10.1038/nrrheum.2016.91
  48. Walcher, L., Kistenmacher, A. K., Sommer, C., Bohlen, S., Ziemann, C., Dehmel, S., Braun, A., Tretbar, U. S., Kloss, S., Schambach, A., Morgan, M., Loffler, D., Kampf, C., Blumert, C., Reiche, K., Beckmann, J., Konig, U., Standfest, B., Thoma, M., Makert, G. R., Ulbert, S., Kossatz-Bohlert, U., Kohl, U., Dunkel, A. and Fricke, S. (2021) Low energy electron irradiation is a potent alternative to gamma irradiation for the inactivation of (CAR-)NK-92 cells in ATMP manufacturing. Front. Immunol. 12, 684052. https://doi.org/10.3389/fimmu.2021.684052
  49. Weiss, P. and Ashwell, G. (1989) The asialoglycoprotein receptor: properties and modulation by ligand. Prog. Clin. Biol. Res. 300, 169-184.
  50. Whitfield, S. J. C., Taylor, C., Risdall, J. E., Griffiths, G. D., Jones, J. T. A., Williamson, E. D., Rijpkema, S., Saraiva, L., Vessillier, S., Green, A. C. and Carter, A. J. (2017) Interference of the T cell and antigen-presenting cell costimulatory pathway using CTLA4-Ig (abatacept) prevents Staphylococcal enterotoxin B pathology. J. Immunol. 198, 3989-3998. https://doi.org/10.4049/jimmunol.1601525