DOI QR코드

DOI QR Code

Betulin, an Anti-Inflammatory Triterpenoid Compound, Regulates MUC5AC Mucin Gene Expression through NF-kB Signaling in Human Airway Epithelial Cells

  • Hossain, Rajib (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Kim, Kyung-il (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Jin, Fengri (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Lee, Hyun Jae (Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University) ;
  • Lee, Choong Jae (Department of Pharmacology, School of Medicine, Chungnam National University)
  • Received : 2022.07.06
  • Accepted : 2022.08.16
  • Published : 2022.11.01

Abstract

Betulin is a triterpenoid natural product contained in several medicinal plants including Betulae Cortex. These medicinal plants have been used for controlling diverse inflammatory diseases in folk medicine and betulin showed anti-inflammatory, antioxidative, and anticancer activities. In this study, we tried to examine whether betulin exerts a regulative effect on the gene expression of MUC5AC mucin under the status simulating a pulmonary inflammation, in human airway epithelial cells. Confluent NCI-H292 cells were pretreated with betulin for 30 min and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 h or the indicated periods. The MUC5AC mucin mRNA expression and mucin glycoprotein production were measured by reverse transcription - polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. To elucidate the action mechanism of betulin, effect of betulin on PMA-induced nuclear factor kappa B (NF-kB) signaling pathway was also investigated by western blot analysis. The results were as follows: 1) Betulin significantly suppressed the production of MUC5AC mucin glycoprotein and down-regulated MUC5AC mRNA expression induced by PMA in NCI-H292 cells. 2) Betulin inhibited NF-κB activation stimulated by PMA. Suppression of inhibitory kappa B kinase (IKK) by betulin led to the inhibition of the phosphorylation and degradation of inhibitory kappa B alpha (IκBα), and the nuclear translocation of NF-κB p65. This, in turn, led to the down-regulation of MUC5AC glycoprotein production in NCI-H292 cells. These results suggest betulin inhibits the gene expression of mucin through regulation of NF-kB signaling pathway, in human airway epithelial cells.

Keywords

Acknowledgement

This research was supported by NRF-2014R1A6A1029617 Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education.

References

  1. Adler, K. B. and Li, Y. (2001) Airway epithelium and mucus: intracellular signaling pathways for gene expression and secretion. Am. J. Respir. Cell Mol. Biol. 25, 397-400. https://doi.org/10.1165/ajrcmb.25.4.f214
  2. Alakurtti, S., Makela, T., Koskimies, S. and Yli-Kauhaluoma, J. (2006) Pharmacological properties of the ubiquitous natural product betulin. Eur. J. Pharm. Sci. 29, 1-13. https://doi.org/10.1016/j.ejps.2006.04.006
  3. Bai, T., Yang, Y., Yao, Y. L., Sun, P., Lian, L. H., Wu, Y. L. and Nan, J. X. (2016) Betulin alleviated ethanol-induced alcoholic liver injury via SIRT1/AMPK signaling pathway. Pharmacol. Res. 105, 1-12. https://doi.org/10.1016/j.phrs.2015.12.022
  4. Choi, B. S., Kim, Y. J., Choi, J. S., Lee, H. J. and Lee, C. J. (2019) Obtusifolin isolated from the seeds of Cassia obtusifolia regulates the gene expression and production of MUC5AC mucin in airway epithelial cells via affecting NF-κB pathway. Phytother. Res. 33, 919-928. https://doi.org/10.1002/ptr.6284
  5. Choi, H. R., Lim, H., Lee, J. H., Park, H. and Kim, H. P. (2021) Interruption of Helicobacter pylori-induced NLRP3 inflammasome activation by chalcone derivatives. Biomol. Ther. (Seoul) 29, 410-418. https://doi.org/10.4062/biomolther.2020.192
  6. Fujisawa, T., Velichko, S., Thai, P., Hung, L.Y., Huang, F. and Wu, R. (2009) Regulation of airway MUC5AC expression by IL-1beta and IL-17A; the NF-kappaB paradigm. J. Immunol. 183, 6236-6243. https://doi.org/10.4049/jimmunol.0900614
  7. Garvin, L. M., Chen, Y., Damsker, J. M. and Rose, M. C. (2016) A novel dissociative steroid VBP15 reduces MUC5AC gene expression in airway epithelial cells but lacks the GRE mediated transcriptional properties of dexamethasone. Pulm. Pharmacol. Ther. 38, 17-26. https://doi.org/10.1016/j.pupt.2016.04.004
  8. Guo, M. Y., Li, W. Y., Zhang, Z., Qiu, C., Li, C. and Deng, G. (2015) Betulin suppresses S. aureus-induced mammary gland inflammatory injury by regulating PPAR-γ in mice. Int. Immunopharmacol. 29, 824-831. https://doi.org/10.1016/j.intimp.2015.08.035
  9. Huang, W. C., Wu, L. Y., Hu, S. and Wu, S. J. (2018) Spilanthol inhibits COX-2 and ICAM-1 expression via suppression of NF-kappaB and MAPK signaling in interleukin-1beta-stimulated human lung epithelial cells. Inflammation 41, 1934-1944. Ishinaga, H., Takeuchi, K., Kishioka, C., Suzuki, S., Basbaum, C. and
  10. Majima, Y. (2005) Pranlukast inhibits NF-kappaB activation and MUC2 gene expression in cultured human epithelial cells. Pharmacology 73, 89-96. https://doi.org/10.1159/000081294
  11. Jiao, P., Wang, Y., Sang, T., Jiao, J. and Li, Y. (2022) Molecular mechanism of betulin palliative therapy for chronic obstructive pulmonary disease (COPD) based on P2X7 receptor target of gated ion channel. Ann. Transl. Med. 10, 707. https://doi.org/10.21037/atm-22-2629
  12. Jin, F., Li, X., Lee, H. J. and Lee, C. J. (2020) Diclofenac inhibits phorbol ester-induced gene expression and production of MUC5AC mucin via affecting degradation of IkBα and translocation of NF-kB p65 in NCI-H292 cells. Biomol. Ther. (Seoul) 28, 431-436. https://doi.org/10.4062/biomolther.2020.090
  13. Kamaraj, Y., Dhayalan, S., Chinnaiyan, U., Kumaresan, V., Subramaniyan, S., Kumar, D., Muniyandi, K. and Punamalai, G.(2021) Triterpenoid compound betulin attenuates allergic airway inflammation by modulating antioxidants, inflammatory cytokines and tissue transglutaminase in ovalbumin-induced asthma mice model. J. Pharm. Pharmacol.73, 968-978. https://doi.org/10.1093/jpp/rgab015
  14. Kim, J. O., Sikder, M. A., Lee, H. J., Rahman, M., Kim, J. H., Chang, G. T. and Lee, C. J. (2012) Phorbol ester or epidermal growth-factorinduced MUC5AC mucin gene expression and production from airway epithelial cells are inhibited by apigenin and wogonin. Phytother. Res. 26, 1784-1788. https://doi.org/10.1002/ptr.4650
  15. Kou, R. W., Gao, Y. Q., Xia, B., Wang, J. Y., Liu, X. N., Tang, J. J., Yin, X. and Gao, J. M. (2021) Ganoderterpene A, a new triterpenoid from Ganoderma lucidum, attenuates LPS-induced inflammation and apoptosis via suppressing MAPK and TLR-4/NF-κB pathways in BV-2 cells. J. Agric. Food Chem. 69, 12730-12740. https://doi.org/10.1021/acs.jafc.1c04905
  16. Kurakula, K., Hamers, A. A., van Loenen, P. and de Vries, C. J. (2015) 6-Mercaptopurine reduces cytokine and Muc5ac expression involving inhibition of NF-kB activation in airway epithelial cells. Respir. Res. 16, 73. https://doi.org/10.1186/s12931-015-0236-0
  17. Laos, S., Baeckstrom, D. and Hansson, G. C. (2006) Inhibition of NFkappaB activation and chemokine expression by the leukocyte glycoprotein, CD43, in colon cancer cells. Int. J. Oncol. 28, 695-704.
  18. Lee, J. W., Ryu, H. W., Lee, S. U., Kim, M. G., Kwon, O. K. and Kim, M. O. (2019) Pistacia weinmannifolia ameliorates cigarette smoke and lipopolysaccharide-induced pulmonary inflammation by inhibiting interleukin-8 production and NF-kappaB activation. Int. J. Mol. Med. 44, 949-959.
  19. Li, J. D., Dohrman, A. F., Gallup, M., Miyata, S., Gum, J. R., Kim, Y. S., Nadel, J. A., Prince, A. and Basbaum, C. B. (1997) Transcriptional activation of mucin by Pseudomonas aeruginosa lipopolysaccharide in the pathogenesis of cystic fibrosis lung disease. Proc. Natl. Acad. Sci. U.S.A. 94, 967-972. https://doi.org/10.1073/pnas.94.3.967
  20. Li, X., Jin, F., Lee, H. J. and Lee, C. J. (2020) Recent advances in the development of novel drug candidates for regulating the secretion of pulmonary mucus. Biomol. Ther. (Seoul) 28, 293-301. https://doi.org/10.4062/biomolther.2020.002
  21. Li, X., Jin, F., Lee, H. J. and Lee, C. J. (2021) Kaempferol regulates the expression of airway MUC5AC mucin gene via IκBα-NF-κB p65 and p38-p44/42-Sp1 signaling pathways. Biomol. Ther. (Seoul) 29, 303-310. https://doi.org/10.4062/biomolther.2020.149
  22. Lillehoj, E. R. and Kim, K. C. (2002) Airway mucus: its components and function. Arch. Pharm. Res. 25, 770-780. https://doi.org/10.1007/BF02976990
  23. Liu, Y., Zhang, B., Zhang, T., Wang, H., Peng, L. and Zhou, L. (2020) Effect of NF-kappaB signal pathway on mucus secretion induced by atmospheric PM 2.5 in asthmatic rats. Ecotoxicol. Environ. Saf. 190, 110094. https://doi.org/10.1016/j.ecoenv.2019.110094
  24. Nader, M. A. and Baraka, H. N. (2012) Effect of betulinic acid on neutrophil recruitment and inflammatory mediator expression in lipopolysaccharide-induced lung inflammation in rats. Eur. J. Pharm. Sci. 46, 106-113. https://doi.org/10.1016/j.ejps.2012.02.015
  25. Nie, Y. C., Wu, H., Li, P. B., Xie, L. M., Luo, Y. L. and Shen, J. G. (2012) Naringin attenuates EGF-induced MUC5AC secretion in A549 cells by suppressing the cooperative activities of MAPKs-AP-1 and IKKs-IkappaB-NF-kappaB signaling pathways. Eur. J. Pharmacol. 690, 207-213. https://doi.org/10.1016/j.ejphar.2012.06.040
  26. Ren, Y., Anaya-Eugenio, G. D., Czarnecki, A. A., Ninh, T. N., Yuan, C., Chai, H. B., Soejarto, D. D., Burdette, J. E., de Blanco, E. J. C. and Kinghorn, A. D. (2018) Cytotoxic and NF-κB and mitochondrial transmembrane potential inhibitory pentacyclic triterpenoids from Syzygium corticosum and their semi-synthetic derivatives. Bioorg. Med. Chem. 26, 4452-4460. https://doi.org/10.1016/j.bmc.2018.07.025
  27. Rose, M. C. and Voynow, J. A. (2006) Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol. Rev. 86, 245-278. https://doi.org/10.1152/physrev.00010.2005
  28. Seo, H. S., Sikder, M. A., Lee, H. J., Ryu, J. and Lee, C. J. (2014) Apigenin inhibits tumor necrosis factor-α-induced production and gene expression of mucin through regulating nuclear factor-kappa B signaling pathway in airway epithelial cells. Biomol. Ther. (Seoul) 22,525-531. https://doi.org/10.4062/biomolther.2014.094
  29. Shang, J., Liu, W., Yin, C., Chu, H. and Zhang, M. (2019) Cucurbitacin E ameliorates lipopolysaccharide-evoked injury, inflammation and MUC5AC expression in bronchial epithelial cells by restraining the HMGB1-TLR4-NF-kappaB signaling. Mol. Immunol. 114, 571-577. https://doi.org/10.1016/j.molimm.2019.09.008
  30. Shao, M. X., Ueki, I. F. and Nadel, J. A. (2003) TNF-alpha converting enzyme mediated MUC5AC mucin expression in cultured human airway epithelial cells. Proc. Natl. Acad. Sci. U.S.A. 100, 11618-11623. https://doi.org/10.1073/pnas.1534804100
  31. Takeyama, K., Dabbagh, K., Lee, H., Agusti, C., Lausier, J. A., Ueki, I. F., Grattan, K. M. and Nadel, J. A. (1999) Epidermal growth factor system regulates mucin production in airways. Proc. Natl. Acad. Sci. U.S.A. 96, 3081-3086. https://doi.org/10.1073/pnas.96.6.3081
  32. Verma, A., Singh, D., Anwar, F., Bhatt, P. C., Al-Abbasi, F. and Kumar, V. (2018) Triterpenoids principle of Wedelia calendulacea attenuated diethynitrosamine-induced hepatocellular carcinoma via down-regulating oxidative stress, inflammation and pathology via NF-kB pathway. Inflammopharmacology 26, 133-146. https://doi.org/10.1007/s10787-017-0350-3
  33. Wu, D. Y., Wu, R., Reddy, S. P., Lee, Y. C. and Chang, M. M. (2007) Distinctive epidermal growth factor receptor/extracellular regulated kinase-independent and -dependent signaling pathways in the induction of airway mucin 5B and mucin 5AC expression by phorbol 12-myristate 13-acetate. Am. J. Pathol. 170, 20-32. https://doi.org/10.2353/ajpath.2007.060452
  34. Zhang, S. Y., Zhao, Q. F., Fang, N. N. and Yu, J. G. (2015) Betulin inhibits pro-inflammatory cytokines expression through activation STAT3 signaling pathway in human cardiac cells. Eur. Rev. Med. Pharmacol. Sci. 19, 455-460.
  35. Zhao, H., Liu, Z., Liu, W., Han, X. and Zhao, M. (2016a) Betulin attenuates lung and liver injuries in sepsis. Int. Immunopharmacol. 30, 50-56. https://doi.org/10.1016/j.intimp.2015.11.028
  36. Zhao, H., Zheng, Q., Hu, X., Shen, H. and Li, F. (2016b) Betulin attenuates kidney injury in septic rats through inhibiting TLR4/NF-κB signaling pathway. Life Sci. 144, 185-193. https://doi.org/10.1016/j.lfs.2015.12.003