DOI QR코드

DOI QR Code

중앙해령 및 섭입대 화산호 지역 해저열수광상의 광물·지구화학적 특성 고찰: 물-암석 상호작용 및 마그마 영향

A Review on Mineralogical and Geochemical Characteristics of Seafloor Massive Sulfide Deposits in Mid-Ocean Ridge and Volcanic Arc Settings: Water-Rock Interaction and Magmatic Contribution

  • 최선기 (한국해양과학기술원 대양자원연구센터)
  • Choi, Sun Ki (Global Ocean Research Center, Korea Institute of Ocean Science & Technology)
  • 투고 : 2022.10.06
  • 심사 : 2022.10.14
  • 발행 : 2022.10.28

초록

해저열수광상(seafloor massive sulfide deposit, SMS)은 다량의 유용금속을 포함하는 중요한 광물 자원으로서 그 성인적 특성 및 금속 함량 변화는 주로 모암과 마그마로부터 금속과 황을 공급하는 물-암석 상호작용과 마그마성 휘발 성분의 용리에 의해 결정된다. 이러한 금속 공급원들은 지구조환경에 따라 다양한 특성을 보이기 때문에 해저열수광화작용에 대한 이들의 기여는 여전히 불분명하다. 본 논평에서는 중앙해령 및 화산호 지역 SMS 광상의 광물·지구화학적 특성을 검토하여 서로 다른 금속 공급원의 영향을 파악하고 향후 진행되어야 할 성인 연구의 방향성에 대해 논하고자 한다. 연구 결과 황비동석 및 큐바나이트, 방연석, 중정석의 산출은 각각 마그마 영향과 물-암석 상호작용의 기여를 반영하여 금속 공급원 특성 차이에 의한 해저열수광상의 유형 구분을 가능케 한다. 또한, 황철석의 Co, As, Hg 거동 특성 및 섬아연석의 철 함량 변화는 지구조환경에 따른 금속 공급원의 영향을 반영하는 효율적인 경험적 지표가 될 수 있다. 현재까지 연구는 주로 열수 침전에 의한 광체에만 국한되었기 때문에 해저열수광상의 성인적 특성을 포괄적으로 이해하기 위해서는 마그마 기원 황화광물과 황산염광물을 대상으로 한 추가 연구가 필수적이다.

The seafloor massive sulfide deposits are important mineral resources for base and precious metals, and their ore genesis and metal contents are mainly controlled by wall-rock leaching process and/or magmatic volatile input from the underlying magma chamber. However, the contribution of two different metal sources to the seafloor hydrothermal mineralization significantly varies in diverse geological settings and thus still remains controversial. In this review, mineralogical and geochemical characteristics of SMS deposits from mid-ocean ridges (MORs) and volcanic arcs were investigated to understand the contribution from different metal sources and to suggest future challenges that need to be addressed. As a result, the genetic occurrences of enargite and cubanite, galena and barite indicate the effects of magmatic input and water-rock interaction, respectively. Also, the distributional behaviors of Co, As, and Hg in pyrite and FeS content of sphalerite could be useful empirical indicators to discriminate the significant roles of different metal sources between MOR and Arc settings. To date, as most studies have focused on sulfide samples recovered from the seabed, further studies on magmatic sulfides and sulfate minerals are required to fully understand the genetic history of SMS deposits.

키워드

과제정보

이 연구는 해양수산과학기술진흥원(인도양 중앙해령 해저열수광상 개발유망광구 선정, 과제번호 20210634)과 한국해양과학기술원(서태평양 공해/심해저 신 생명자원 및 퇴적물 희유금속 자원 탐사, 과제번호 PEA0024)의 지원을 받아 수행되었습니다. 본 논문을 세심하게 검토하여 고견을 주신 익명의 심사자들께 진심으로 감사드립니다.

참고문헌

  1. Beaulieu, S.E., Baker, E.T. and German, C.R. (2015) 'Where are the undiscovered hydrothermal vents on oceanic spreading ridges?', Deep-Sea Research Part II: Topical Studies in Oceanography, v.121, p.202-212. doi: 10.1016/j.dsr2.2015.05.001
  2. Berkenbosch, H.A., de Ronde C.E.J., Gemmell, J.B., McNeill, A.W. and Goemann, K. (2012) Mineralogy and formation of black smoker chimneys from Brothers submarine Volcano, Kermadec arc. Econ. Geol., v.107, p.1613-1633. doi: 10.2113/econgeo.107.8.1613
  3. Butterfield, D.A., Nakamura, K., Takano, B., Lilley, M.D., Lupton, J.E., Resing, J.A. and Roe, K.K. (2011) High SO2 flux, sulfur accumulation, and gas fractionation at an erupting submarine volcano. Geology, v.39, p.803-806. doi: 10.1130/G31901.1
  4. Choi, S.K., Lee, K.-Y., Pak, S.J., Choi, S.-H. and Lee, I.-K. (2015) Mineralogical and Fluid Inclusion Study on Seafloor Hydrothermal Vents at TA25 Subsea Caldera in Tongan Waters. Econ. Environ. Geol., v.48, p.273-285. doi: 10.9719/EEG.2015.48.4.273
  5. Choi, S.K., Pak, S.J., Kim, J., Park, J.W. and Son, S.K. (2021a) Gold and tin mineralisation in the ultramafic-hosted Cheoeum vent field, Central Indian Ridge. Miner. Depos., v.56, p.885-906. doi: 10.1007/s00126-020-01012-5
  6. Choi, S.K., Pak, S.J., Park, J.W., Kim, J. and Son, S.K. (2021b). Geochemical Variability of Pyrite, Sphalerite, and Chalcopyrite from Submarine Hydrothermal Vents. Abstract presented at the KSEEG Annual Conference, 167p.
  7. Choi, S.K., Pak, S.J., Park, J.W., Kim, H.S., Kim, J. and Choi, S.H. (2022) Trace-element distribution and ore-forming processes in Au-Ag-rich hydrothermal chimneys and mounds in the TA25 West vent field of the Tonga Arc. Miner. Depos., p.1-26. https://doi.org/10.1007/s00126-022-01136-w
  8. Cook, N.J., Ciobanu, C.L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., Saini-Eidukat, B. and Melcher, F. (2009) Trace and minor elements in sphalerite: A LA-ICPMS study. Geochim. Cosmochim. Acta, v.73, p.4761-4791. doi: 10.1016/j.gca.2009.05.045
  9. Corliss, J.B., Dymond, J., Gordon, L.I., Edmond, J.M., von Herzen, R.P., Ballard, R.D., Green, K., Williams, D., Bainbridge, A., Crane, K. and van Andel, T.H. (1979) Submarine Thermal Springs on the Galapagos Rift. Science, v.203, p.1073-1083. doi: 10.1126/science.203.4385.1073
  10. de Ronde, C.E.J., Massoth, G.J., Butterfield, D.A., Christenson, B.W., Ishibashi, J., Ditchburn, R.G., Hannington, M.D., Brathwaite, R.L., Lupton, J.E., Kamenetsky, V.S., Graham, I.J., Zellmer, G.F., Dziak, R.P., Embley, R.W., Dekov, V.M., Munnik, F., Lahr, J., Evans, L.J. and Takai, K. (2011) Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand. Miner. Depos., v.46, p.541-584. doi: 10.1007/s00126-011-0345-8
  11. de Ronde, C.E.J., Humphris, S.E., Hofig, T.W. and Reyes, A.G. (2019) Critical role of caldera collapse in the formation of seafloor mineralization: the case of Brothers volcano. Geology, v.47, p.762-766. doi: 10.1130/G46047.1
  12. Escartin, J., Smith, D.K., Cann, J., Schouten, H., Langmuir, C.H. and Escrig, S. (2008) Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature, v.455(7214), p.790-794. doi: 10.1038/nature07333
  13. Douville, E., Charlou, J.L., Oelkers, E.H., Bienvenu, P., Jove Colon, C.F., Donval, J.P., Fouquet, Y., Prieur, D. and Appriou, P. (2002) The rainbow vent fluids (36°14'N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem. Geol., v.184, p.37-48. doi: 10.1016/S0009-2541(01)00351-5
  14. Evans, G.N., Tivey, M.K., Monteleone, B., Shimizu, N., Seewald, J.S. and Rouxel, O.J. (2020) Trace element proxies of seafloor hydrothermal fluids based on secondary ion mass spectrometry (SIMS) of black smoker chimney linings. Geochim. Cosmochim. Acta, v.269, p.346-375. doi: 10.1016/j.gca.2019.09.038
  15. Falkenberg, J.J., Keith, M., Haase, K.M., Bach, W., Klemd, R., Strauss, H., Yeo, I.A., Rubin, K.H., Storch, B. and Anderson, M.O. (2021) Effects of fluid boiling on Au and volatile element enrichment in submarine arc-related hydrothermal systems. Geochim. Cosmochim. Acta, v.307, p.105-132. doi: 10.1016/j.gca.2021.05.047
  16. Fouquet, Y., Cambon, P., Etoubleau, J., Charlou, J.L., Ondreas, H., Barriga, F.J.A.S., Cherkashov, G., Semkova, T., Poroshina, T., Bohn, M., Donval, J.P., Henry, K., Murphy, P. and Rouxel, O. (2010) Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: a new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. Diversity of hydrothermal systems on slow spreading ocean ridges. Geophys. Monogr. Ser., v.188, p.321-367. doi: 10.1029/2008GM000746
  17. Fox, S., Katzir, Y., Bach, W., Schlicht, L. and Glessner, J. (2020) Magmatic volatiles episodically flush oceanic hydrothermal systems as recorded by zoned epidote. Commun. Earth Environ., v.1, p.1-9. doi: 10.1038/s43247-020-00051-0
  18. Grundler, P.V., Brugger, J., Etschmann, B.E., Helm, L., Liu, W., Spry, P.G., Tian, Y., Testemale, D. and Pring, A. (2013) Speciation of aqueous tellurium(IV) in hydrothermal solutions and vapors, and the role of oxidized tellurium species in Te transport and gold deposition. Geochim. Cosmochim. Acta, v.120, p.298-325. doi: 10.1016/j.gca.2013.06.009
  19. Hannington, M.D., De Ronde, C.E.J. and Petersen, S. (2005) 'SeaFloor Tectonics and Submarine Hydrothermal Systems', in One Hundredth Anniversary Volume. Society of Economic Geologists, p.111-141. doi: 10.5382/AV100.06.
  20. Hannington, M., Jamieson, J., Monecke, T., Petersen, S. and Beaulieu, S. (2011) The abundance of seafloor massive sulfide deposits. Geology, v.39, p.1155-1158. doi: 10.1130/G32468.1
  21. Haymon, R.M. (1983) Growth history of hydrothermal black smoker. Nature, v.301, p.695-698. doi: 10.1038/301695a0
  22. Herzig, P.M., Hannington, M.D., Fouquet, Y., von Stackelberg, U. and Petersen, S. (1993) Gold-rich polymetallic sulfides from the Lau back arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the Southwest Pacific. Econ. Geol., v.88, p.2182-2209. doi: 10.2113/gsecongeo.88.8.2182
  23. Ishibashi, J. ichiro, Tsunogai, U., Toki, T., Ebina, N., Gamo, T., Sano, Y., Masuda, H. and Chiba, H. (2015). Chemical composition of hydrothermal fluids in the central and southern Mariana Trough backarc basin. Deep. Res. Part II Top. Stud. Oceanogr., v.121, p.126-136. doi: 10.1016/j.dsr2.2015.06.003
  24. Kawasumi, S. and Chiba, H. (2017) Redox state of seafloor hydrothermal fluids and its effect on sulfide mineralization. Chem. Geol., v.451, p.25-37. doi: 10.1016/j.chemgeo.2017.01.001
  25. Keith, M., Haase, K.M., Schwarz-Schampera, U., Klemd, R., Petersen, S. and Bach, W. (2014) Effects of temperature, sulfur, and oxygen fugacity on the composition of sphalerite from submarine hydrothermal vents. Geology, v.42, p.699-702. doi: 10.1130/G35655.1
  26. Keith, M., Hackel, F., Haase, K.M., Schwarz-Schampera, U. and Klemd, R. (2016) Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geol. Rev., v.72, p.728-745. doi: 10.1016/j.oregeorev.2015.07.012
  27. Keith, M., Haase, K.M., Klemd, R., Smith, D.J., SchwarzSchampera, U. and Bach, W. (2018a) Constraints on the source of Cu in a submarine magmatic hydrothermal system, Brothers volcano, Kermadec island arc. Contrib. Mineral. Petrol., v.173, p.40. doi: 10.1007/s00410-018-1470-5
  28. Keith, M., Smith, D.J., Jenkin, G.R.T., Holwell, D.A. and Dye, M.D. (2018b) A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: insights into ore-forming processes. Ore Geol. Rev., v.96, p.269-282. doi: 10.1016/j.oregeorev.2017.07.023
  29. Kim, J., Lee, I. and Lee, K.Y. (2004) S, Sr, and Pb isotopic systematics of hydrothermal chimney precipitates from the Eastern Manus Basin, western Pacific: evaluation of magmatic contribution to hydrothermal system. J. Geophys. Res., v.109, p. B12210. doi: 10.1029/2003JB002912
  30. Kim, J., Lee, I., Halbach, P., Lee, K.Y., Ko, Y.T. and Kim, K.H. (2006) Formation of hydrothermal vents in the North Fiji Basin: sulfur and lead isotope constraints. Chem Geol., v.233, p.257-275. doi: 10.1016/j.chemgeo.2006.03.011
  31. Knight, D.R., Roberts, S. and Webber, A.P. (2018) The influence of spreading rate, basement composition, fluid chemistry and chimney morphology on the formation of gold-rich SMS deposits at slow and ultraslow mid-ocean ridges. Miner. Depos., v.53, p.143-152. doi: 10.1007/s00126-017-0762-4
  32. Martin, A.J., Keith, M., Parvaz, D.B., McDonald, I., Boyce, A.J., McFall, K.A., Jenkin, G.R.T., Strauss, H. and MacLeod, C.J. (2020) Effects of magmatic volatile influx in mafic VMS hydrothermal systems: Evidence from the Troodos ophiolite, Cyprus. Chem. Geol., v.531, p.119325. doi: 10.1016/j.chemgeo.2019.119325
  33. Maslennikov, V.V., Maslennikova, S.P., Large, R.R. and Danyushevsky, L.V. (2009) Study of trace element zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals, Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Econ. Geol., v.104, p.1111-1141. doi: 10.2113/gsecongeo.104.8.1111
  34. McCaig, A.M., Cliff, R.A., Escartin, J., Fallick, A.E. and MacLeod, C.J. (2007) Oceanic detachment faults focus very large volumes of black smoker fluids. Geology, v.35(10), p. 935-938. doi: doi.org/10.1130/G23657A.1
  35. Melekestseva, I.Y., Tret'yakov, G.A., Nimis, P., Yuminov, A.M., Maslennikov, V.V., Maslennikova, S.P., Kotlyarov, V.A., Beltenev, V.E., Danyushevsky, L.V. and Large, R. (2014) Barite-rich massive sulfides from the Semenov-1 hydrothermal field (Mid-Atlantic Ridge, 13°30.87' N): evidence for phase separation and magmatic input. Marine. Geol., v.349, p.37-54. doi: 10.1016/j.margeo.2013.12.013
  36. Melekestseva, I.Y., Maslennikov, V.V., Tret'yakov, G.A., Nimis, P., Beltenev, V.E., Rozhdestvenskaya, I.I., Maslennikova, S.P., Belogub, E.V., Danyushevsky, L., Large, R., Yuminov, A.M. and Sadykov, S.A. (2017) Goldand silver-rich massive sulfides from the Semenov-2 hydrothermal field, 13°31.13'N, Mid-Atlantic Ridge: a case of magmatic contribution? Econ. Geol., v.112, p.741-773. doi: 10.2113/econgeo.112.4.741
  37. Meng, X., Li, X., Chu, F., Zhu, J., Lei, J., Li, Z., Wang, H., Chen, L. and Zhu, Z. (2020) Trace element and sulfur isotope compositions for pyrite across the mineralization zones of a sulfide chimney from the East Pacific Rise (1-2°S). Ore Geol. Rev., v.116, p.103209. doi: 10.1016/j.oregeorev.2019.103209
  38. Monecke, T., Petersen, S. and Hannington, M.D. (2014) Constraints on water depth of massive sulfide formation: evidence from modern seafloor hydrothermal systems in arc-related settings. Econ. Geol., v.109, p.2079-2101. doi: 10.2113/econgeo.109.8.2079
  39. Nakamura, K., Morishita, T., Bach, W., Klein, F., Hara, K., Okino, K., Takai, K. and Kumagai, H. (2009) Serpentinized troctolites exposed near the Kairei Hydrothermal Field, Central Indian Ridge: Insights into the origin of the Kairei hydrothermal fluid supporting a unique microbial ecosystem. Earth Planet. Sci. Lett., v.280, p.128-136. doi: 10.1016/j.epsl.2009.01.024
  40. Nestmeyer, M., Keith, M., Haase, K.M., Klemd, R., Voudouris, P., Schwarz-Schampera, U., Strauss, H., Kati, M. and Magganas, A. (2021) Trace Element Signatures in Pyrite and Marcasite From Shallow Marine Island Arc-Related Hydrothermal Vents, Calypso Vents, New Zealand, and Paleochori Bay, Greece. Front. Earth Sci., v.9, p.1-18. doi: 10.3389/feart.2021.641654
  41. Patten, C.G.C., Pitcairn, I.K., Teagle, D.A.H. and Harris, M. (2016) Mobility of Au and related elements during the hydrothermal alteration of the oceanic crust: implications for the sources of metals in VMS deposits. Miner. Depos., v.51(2), p.170-200. doi:10.1007/s00126-015-0598-8
  42. Patten, C.G.C., Pitcairn, I.K., Alt, J.C., Zack, T., Lahaye, Y., Teagle, D.A.H. and Markdahl, K. (2020) Metal fluxes during magmatic degassing in the oceanic crust: sulfide mineralisation at ODP site 786B, Izu-Bonin forearc. Miner. Depos., v.55, p.469-489. doi: 10.1007/s00126-019-00900-9
  43. Reich, M., Kesler, S.E., Utsunomiya, S., Palenik, C.S., Chryssoulis, S.L. and Ewing, R.C. (2005) Solubility of gold in arsenian pyrite. Geochim. Cosmochim. Acta, v.69, p.2781-2796. doi: 10.1016/j.gca.2005.01.011
  44. Resing, J.A., Lebon, G., Baker, E.T., Lupton, J.E., Embley, R.W., Massoth, G.J., Chadwick, W.W. and de Ronde, C.E.J. (2007) Venting of acid-sulfate fluids in a high-sulfidation setting at NW Rota-1 submarine volcano on the Mariana Arc. Econ. Geol., v.102, p.1047-1061. doi: 10.2113/gsecongeo.102.6.1047
  45. Schmidt, K., Garbe-Schonberg, D., Koschinsky, A., Strauss, H., Jost, C.L., Klevenz, V. and Koniger, P. (2011) Fluid elemental and stable isotope composition of the Nibelungen hydrothermal field (8°18'S, Mid-Atlantic Ridge): constraints on fluid- rock interaction in heterogeneous lithosphere. Chem. Geol., v.280, p.1-18. doi: 10.1016/j.chemgeo.2010.07.008
  46. Scott, S.D. and Barnes, H.L. (1971) Sphalerite geothermometry and geobarometry. Econ. Geol., v.66, p.653-669. doi: 10.2113/gsecongeo.66.4.653
  47. Stoffers, P., Worthington, T.J., Schwarz-Schampera, U., Hannington, M.D., Massoth, G.J., Hekinian, R., Schmidt, M., Lundsten, L.J., Evans, L.J., Vaiomo'unga, R. and Kerby, T. (2006) Submarine volcanoes and high-temperature hydrothermal venting on the Tonga arc, southwest Pacific. Geology, v.34, p.453-456. doi: 10.1130/G22227.1
  48. Tao, C., Seyfried, W.E., Lowell, R.P., Liu, Y., Liang, J., Guo, Z., Ding, K., Zhang, H., Liu, J., Qiu, L., Egorov, I., Liao, S., Zhao, M., Zhou, J., Deng, X., Li, H., Wang, H., Cai, W., Zhang, G., Zhou, H., Lin, J. and Li, W. (2020) Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge. Nat. Commun., v.11(1), p. 1-9. doi: 10.1038/s41467-020-15062-w
  49. Tivey, M. (2007) Generation of Seafloor Hydrothermal Vent Fluids and Associated Mineral Deposits. Oceanography, v.20(1), p.50-65. doi: 10.5670/oceanog.2007.80
  50. Toffolo, L., Nimis, P., Tret'yakov, G.A., Melekestseva, I.Y. and Beltenev, V.E. (2020) Seafloor massive sulfides from mid-ocean ridges: Exploring the causes of their geochemical variability with multivariate analysis. Earth. Sci. Rev., v.201, p.102958. doi: 10.1016/j.earscirev.2019.102958
  51. Wang, Y., Han, X., Petersen, S., Frische, M., Qiu, Z., Li, Huaiming, Li, Honglin, Wu, Z. and Cui, R. (2017) Mineralogy and trace element geochemistry of sulfide minerals from the Wocan Hydrothermal Field on the slow-spreading Carlsberg Ridge, Indian Ocean. Ore Geol. Rev., v.84, p.1-19. doi: 10.1016/j.oregeorev.2016.12.020
  52. Wang, Y., Han, X., Petersen, S., Frische, M., Qiu, Z., Cai, Y. and Zhou, P. (2018) Trace Metal Distribution in Sulfide Minerals from Ultramafic-Hosted Hydrothermal Systems: Examples from the Kairei Vent Field, Central Indian Ridge. Minerals, v.8, p.526. doi: 10.3390/min8110526
  53. Wohlgemuth-Ueberwasser, C.C., Viljoen, F., Petersen, S. and Vorster, C. (2015) Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: an insitu LAICP-MS study. Geochim. Cosmochim. Acta, v.159, p.16-41. doi: 10.1016/j.gca.2015.03.020
  54. Wu, Z., Sun, X., Xu, H., Konishi, H., Wang, Y., Wang, C., Dai, Y., Deng, X. and Yu, M. (2016) Occurrences and distribution of "invisible" precious metals in sulfide deposits from the Edmond hydrothermal field, Central Indian Ridge. Ore Geol. Rev., v.79, p.105-132. doi: 10.1016/j.oregeorev.2016.05.006
  55. Yeats, C.J., Parr, J.M., Binns, R.A., Gemmell, J.B. and Scott, S.D. (2014) The Susu Knolls hydrothermal field, Eastern Manus Basin, Papua New Guinea: an active submarine high-sulfidation copper-gold system. Econ. Geol., v.109, p.2207-2226. doi: 10.2113/econgeo.109.8.2207