DOI QR코드

DOI QR Code

A viscoelastic-micropolar solid with voids and microtemperatures under the effect of the gravity field

  • Said, Samia M. (Department of Mathematics, Faculty of Science, Zagazig University)
  • Received : 2021.09.21
  • Accepted : 2022.09.29
  • Published : 2022.10.25

Abstract

The model of two-dimensional plane waves is analyzed in a micropolar-thermoelastic solid with microtemperatures in the context of the three-phase-lag model, dual-phase-lag model, and the Green-Naghdi theory of type III. Harmonic wave analysis is used to hold the solution to the problem. Numerical results of the physical fields are visualized to show the effects of the gravity field, magnetic field, and viscosity. The expression for the field variables is obtained generally and represented graphically for a particular medium.

Keywords

Acknowledgement

The authors received no financial support for the research, authorship, and/or publication of this article.

References

  1. Abbas, I.A. (2011a), "A two-dimensional problem for a fibre-reinforced anisotropic thermoelastic half-space with energy dissipation", Sadhana, 36(3), 411-423. https://doi.org/10.1007/s12046-011-0025-5.
  2. Abo-Dahab, S.M. and Abbas, I.A. (2011b), "LS model on thermal shock problem of generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity", Appl. Math. Model., 35(8), 3759-3768. https://doi.org/10.1016/j.apm.2011.02.028.
  3. Abbas, I.A. (2014a), "Fractional order GN model on thermoelastic interaction in an infinite fibre-reinforced anisotropic plate containing a circular hole", J. Comput. Theor. Nanosci., 11(2), 380-384. https://doi.org/10.1166/jctn.2014.3363.
  4. Abbas, I.A. (2014 b), "Three-phase lag model on thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a cylindrical cavity", J. Comput. Theor. Nanosci., 11(4), 987-992. https://doi.org/10.1166/jctn.2014.3454.
  5. Abbas, I.A. and Abo-Dahab, S.M. (2014c), "On the numerical solution of thermal shock problem for generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity", J. Comput. Theor. Nanosci., 11(3), 607-618. https://doi.org/10.1166/jctn.2014.3402.
  6. Abbas, I.A. (2015), "Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity", Appl. Math. Model., 39(20), 6196-6206. https://doi.org/10.1016/j.apm.2015.01.065.
  7. Aouadi, M. (2008), "Some theorems in the isotropic theory of microstretch thermoelasticitywith microtemperatures", J. Therm. Stress., 31(7), 649-662. https://doi.org/10.1080/01495730801981772.
  8. Bhatti, M.M., Marin, M., Zeeshan, A. and Abdelsalam, S.I. (2020), "Editorial: recent trends in computational fluid dynamics", Front Phys., 8, 593111. https://doi.org/ 10.3389/fphy.2020.593111.
  9. Chirila, A. and Marin, M. (2019), "Diffusion in microstretch thermoelasticity with microtemperatures and microconcentrations". (Eds., Flaut, C., Hoskova-Mayerova, S. and Flaut, D.), Models and Theories in Social Systems. Studies in Systems, Decision and Control. 179, 149-164. https://doi.org/ 10.1007/978-3-030-00084-4_8.
  10. Choudhuri, S.K.R. (2007), "On a thermoelastic three-phase-lag model", J.Therm. Stress., 30(3), 231-238. https://doi.org/10.1080/01495730601130919.
  11. Cosserat, E. and Cosserat, F. (1909), "Theorie des Corps Deformables", A Hermann et Fils, Paris. 81, 67. https://doi.org/10.1038/081067a0.
  12. Cowin, S.C. and Nunziato, J.W. (1973), "Linear elastic materials with voids", J. Elast., 13, 125-147. https://doi.org/10.1007/BF00041230.
  13. Eringen, A.C. (1966), "Linear theory of micropolar elasticity", J. Math. Mech., 15(6), 909-923. https://www.jstor.org/stable/24901442.
  14. Goodman, M.A. and Cowin, S.C. (1972), "A continuum theory for granular material", Arch. Rational Mech. Anal., 44, 249-266. https://doi.org/10.1007/BF00284326.
  15. Hobiny, A.D. and Abbas, I.A. (2018), "Theoretical analysis of thermal damages in skin tissue induced by intense moving heat source", Int. J. Heat Mass Transfer., 124, 1011-1014. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.018.
  16. Hobiny, A.D. and Abbas, I.A. (2020), "Fractional order thermoelastic wave assessment in a two-dimension medium with voids", Geomech. Eng., 21(1), 85-93. https://doi.org/10.12989/gae.2020.21.1.085.
  17. Hobiny, A., Alzahrani, F., Abbas, I. and Marin, M. (2020), "The effect of fractional time derivative of bioheat model in skin tissue induced to laser irradiation", Symmetry 12 (4), 602. https://doi.org/10.3390/sym12040602.
  18. Iesan, D. and Quintanilla, R. (2000), "On a theory of thermoelasticity with microtemperatures", J. Therm. Stress., 23(3), 199-215. https://doi.org/10.1080/014957300280407.
  19. Kakar, R. and Kakar, S. (2014), "Electro-magneto-thermoelastic surface waves in non-homogeneous orthotropic granular half space", Geomech. Eng., 7(1),1-36. https://doi.org/10.12989/gae.2014.7.1.001.
  20. Kumar, R. and Rani, L. (2006), "Deformation due to moving loads in thermoelastic body with voids", Int. J. Appl. Mech. Eng., 11(1), 37-59. http://content.sciendo.com/view/journals/ijame/ijame- overview.xml.
  21. Kumar, A., Kumar, R. and Abo-Dahab, S.M. (2017), "Mathematical model for Rayleigh waves in microstretch thermoelastic medium with microtemperatures", J. Appl. Sci. Eng., 20(2), 149-156. https://doi.org/10.6180/jase.2017.20.2.02.
  22. Marin, M. (1997), "On the domain of influence in thermoelasticity of bodies with voids", Arch. Math. (Brno)., 33(4), 301-308. http://dml.cz/dmlcz/107618. 107618
  23. Mohamed, R.A., Abbas, I.A. and Abo-Dahab, S.M. (2009), "Finite element analysis of hydromagnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-Darcian porous medium in the presence of chemical reaction", Comm. Nonlinear Sci. Numer. Simul., 14(4), 1385-1395. https:// doi.org/10.1016/j.cnsns.2008.04.006.
  24. Montanaro, A. (1999), "On singular surfaces in isotropic linear thermoelasticity with initial stress", J. Acoust. Soc. Am., 106(3), 1586-1588. https://doi.org/10.1121/1.427154.
  25. Othman, M.I.A., Alharbi, A.M. and Al-Autabi, AL.M.Kh. (2020), "Micropolar thermoelastic medium with voids under the effect of rotation concerned with 3PHL model", Geomechan. Eng., 21(5), 447-459. https://doi.org/10.12989/gae.2020.21.5.447.
  26. Quintanilla, R. and Racke, R. (2008), "A note on stability in three-phase-lag heat conduction", Int. J. Heat Mass Transfer., 51(1-2), 24-29. https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.045.
  27. Saci, M. and Djebabla, A. (2020), "On the stability of linear porous elastic materials with microtemperatures effects", J. Therm. Stress., 43(10), 1300-1315. https://doi.org/10.1080/01495739.2020.1779629.
  28. Said, S.M. (2020), "The effect of mechanical strip load on a magneto-micropolar thermoelastic medium: Comparison of four different theories", Mech. Res. Com., 107, 103549. https://doi.org/10.1016/j.mechrescom.2020.103549.
  29. Said, S.M., Abd-Elaziz, El. M. and Othman, M.I.A. (2020), "Modeling of memory-dependent derivative in a rotating magneto-thermoelastic diffusive medium with variable thermal conductivity", Steel Compos. Struct., 36(6), 617-629. https://doi.org/10.12989/scs.2020.36.6.617.
  30. Sarkar, N. and Tomar, S.K. (2019), "Plane waves in nonlocal thermoelastic solid with voids", J. Therm. Stress., 42(5), 580-606. https://doi.org/10.1080/01495739.2018.1554395.