Acknowledgement
The authors received no financial support for the research, authorship, and/or publication of this article.
References
- Abbas, I.A. (2011a), "A two-dimensional problem for a fibre-reinforced anisotropic thermoelastic half-space with energy dissipation", Sadhana, 36(3), 411-423. https://doi.org/10.1007/s12046-011-0025-5.
- Abo-Dahab, S.M. and Abbas, I.A. (2011b), "LS model on thermal shock problem of generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity", Appl. Math. Model., 35(8), 3759-3768. https://doi.org/10.1016/j.apm.2011.02.028.
- Abbas, I.A. (2014a), "Fractional order GN model on thermoelastic interaction in an infinite fibre-reinforced anisotropic plate containing a circular hole", J. Comput. Theor. Nanosci., 11(2), 380-384. https://doi.org/10.1166/jctn.2014.3363.
- Abbas, I.A. (2014 b), "Three-phase lag model on thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a cylindrical cavity", J. Comput. Theor. Nanosci., 11(4), 987-992. https://doi.org/10.1166/jctn.2014.3454.
- Abbas, I.A. and Abo-Dahab, S.M. (2014c), "On the numerical solution of thermal shock problem for generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity", J. Comput. Theor. Nanosci., 11(3), 607-618. https://doi.org/10.1166/jctn.2014.3402.
- Abbas, I.A. (2015), "Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity", Appl. Math. Model., 39(20), 6196-6206. https://doi.org/10.1016/j.apm.2015.01.065.
- Aouadi, M. (2008), "Some theorems in the isotropic theory of microstretch thermoelasticitywith microtemperatures", J. Therm. Stress., 31(7), 649-662. https://doi.org/10.1080/01495730801981772.
- Bhatti, M.M., Marin, M., Zeeshan, A. and Abdelsalam, S.I. (2020), "Editorial: recent trends in computational fluid dynamics", Front Phys., 8, 593111. https://doi.org/ 10.3389/fphy.2020.593111.
- Chirila, A. and Marin, M. (2019), "Diffusion in microstretch thermoelasticity with microtemperatures and microconcentrations". (Eds., Flaut, C., Hoskova-Mayerova, S. and Flaut, D.), Models and Theories in Social Systems. Studies in Systems, Decision and Control. 179, 149-164. https://doi.org/ 10.1007/978-3-030-00084-4_8.
- Choudhuri, S.K.R. (2007), "On a thermoelastic three-phase-lag model", J.Therm. Stress., 30(3), 231-238. https://doi.org/10.1080/01495730601130919.
- Cosserat, E. and Cosserat, F. (1909), "Theorie des Corps Deformables", A Hermann et Fils, Paris. 81, 67. https://doi.org/10.1038/081067a0.
- Cowin, S.C. and Nunziato, J.W. (1973), "Linear elastic materials with voids", J. Elast., 13, 125-147. https://doi.org/10.1007/BF00041230.
- Eringen, A.C. (1966), "Linear theory of micropolar elasticity", J. Math. Mech., 15(6), 909-923. https://www.jstor.org/stable/24901442.
- Goodman, M.A. and Cowin, S.C. (1972), "A continuum theory for granular material", Arch. Rational Mech. Anal., 44, 249-266. https://doi.org/10.1007/BF00284326.
- Hobiny, A.D. and Abbas, I.A. (2018), "Theoretical analysis of thermal damages in skin tissue induced by intense moving heat source", Int. J. Heat Mass Transfer., 124, 1011-1014. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.018.
- Hobiny, A.D. and Abbas, I.A. (2020), "Fractional order thermoelastic wave assessment in a two-dimension medium with voids", Geomech. Eng., 21(1), 85-93. https://doi.org/10.12989/gae.2020.21.1.085.
- Hobiny, A., Alzahrani, F., Abbas, I. and Marin, M. (2020), "The effect of fractional time derivative of bioheat model in skin tissue induced to laser irradiation", Symmetry 12 (4), 602. https://doi.org/10.3390/sym12040602.
- Iesan, D. and Quintanilla, R. (2000), "On a theory of thermoelasticity with microtemperatures", J. Therm. Stress., 23(3), 199-215. https://doi.org/10.1080/014957300280407.
- Kakar, R. and Kakar, S. (2014), "Electro-magneto-thermoelastic surface waves in non-homogeneous orthotropic granular half space", Geomech. Eng., 7(1),1-36. https://doi.org/10.12989/gae.2014.7.1.001.
- Kumar, R. and Rani, L. (2006), "Deformation due to moving loads in thermoelastic body with voids", Int. J. Appl. Mech. Eng., 11(1), 37-59. http://content.sciendo.com/view/journals/ijame/ijame- overview.xml.
- Kumar, A., Kumar, R. and Abo-Dahab, S.M. (2017), "Mathematical model for Rayleigh waves in microstretch thermoelastic medium with microtemperatures", J. Appl. Sci. Eng., 20(2), 149-156. https://doi.org/10.6180/jase.2017.20.2.02.
- Marin, M. (1997), "On the domain of influence in thermoelasticity of bodies with voids", Arch. Math. (Brno)., 33(4), 301-308. http://dml.cz/dmlcz/107618. 107618
- Mohamed, R.A., Abbas, I.A. and Abo-Dahab, S.M. (2009), "Finite element analysis of hydromagnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-Darcian porous medium in the presence of chemical reaction", Comm. Nonlinear Sci. Numer. Simul., 14(4), 1385-1395. https:// doi.org/10.1016/j.cnsns.2008.04.006.
- Montanaro, A. (1999), "On singular surfaces in isotropic linear thermoelasticity with initial stress", J. Acoust. Soc. Am., 106(3), 1586-1588. https://doi.org/10.1121/1.427154.
- Othman, M.I.A., Alharbi, A.M. and Al-Autabi, AL.M.Kh. (2020), "Micropolar thermoelastic medium with voids under the effect of rotation concerned with 3PHL model", Geomechan. Eng., 21(5), 447-459. https://doi.org/10.12989/gae.2020.21.5.447.
- Quintanilla, R. and Racke, R. (2008), "A note on stability in three-phase-lag heat conduction", Int. J. Heat Mass Transfer., 51(1-2), 24-29. https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.045.
- Saci, M. and Djebabla, A. (2020), "On the stability of linear porous elastic materials with microtemperatures effects", J. Therm. Stress., 43(10), 1300-1315. https://doi.org/10.1080/01495739.2020.1779629.
- Said, S.M. (2020), "The effect of mechanical strip load on a magneto-micropolar thermoelastic medium: Comparison of four different theories", Mech. Res. Com., 107, 103549. https://doi.org/10.1016/j.mechrescom.2020.103549.
- Said, S.M., Abd-Elaziz, El. M. and Othman, M.I.A. (2020), "Modeling of memory-dependent derivative in a rotating magneto-thermoelastic diffusive medium with variable thermal conductivity", Steel Compos. Struct., 36(6), 617-629. https://doi.org/10.12989/scs.2020.36.6.617.
- Sarkar, N. and Tomar, S.K. (2019), "Plane waves in nonlocal thermoelastic solid with voids", J. Therm. Stress., 42(5), 580-606. https://doi.org/10.1080/01495739.2018.1554395.