DOI QR코드

DOI QR Code

Vortex induced vibrations and motions - Review, issues and challenges

  • Sahoo, Patitapaban (Design and Simulation Laboratory, Department of Ocean Engineering, Indian Institute of Technology Madras) ;
  • Domala, Vamshikrishna (Post Doctoral Fellow, CADIT Laboratory, Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Sharma, R. (Design and Simulation Laboratory, Department of Ocean Engineering, Indian Institute of Technology Madras)
  • Received : 2022.08.12
  • Accepted : 2022.09.08
  • Published : 2022.09.25

Abstract

Herein, we report meaningful and selective review of the progress made on 'Vortex Induced Vibration (VIV)' and 'Vortex Induced Motion (VIM)' of 'Structures of Specific Shapes (SoSS)' subjected to steady uniform flow and of relevance to/in marine structures. Important and critical elements of the numerical methods, experimental methods, and physical ideas are listed and analysed critically and the limitations of the current state of art of VIV/VIM are discussed in-detail. Our focus and aim are to analyse the existing researches with respect to the application in analyses, design and production of marine structures and the reported reviews centre on these only. We identify the critical and important issues that exist in the current literature and utilise these issues to highlight the challenges that need to be tackled to design and develop new age marine structures that can exist and operate safely in the areas of dominance by the VIV/VIM. Finally, we also identify some areas for future scope of research on VIV/VIM.

Keywords

Acknowledgement

This research was supported by the internal research grants of IIT Madras through research scheme: OE14D213 for Mr. P. Sahoo.

References

  1. Antony, A., Vinayan, V., Halkyard, J., Kim, S.J., Holmes, S. and Spernjak, D. (2015), "A CFD based analysis of the Vortex Induced Motion of deep draft semisubmersibles", Proceedings of the 25th International Ocean and Polar Engineering Conference, Kona, Hawaii, USA, June.
  2. Bai, Z., Xiao, L., Kuo, Y. and Yang, L. (2013), "Research on vortex induced motion of a deep draft semisubmersible with four rectangular columns", Proceedings of the 23th International Offshore and Polar Engineering Conference, ISOPE-2013, Alaska, USA, June 30-July 5.
  3. Bearman, P.W. (1984), "Vortex shedding from oscillating bluff bodies", Annu. Rev. Fluid Mech., 16, 195-222. https://doi:10.1146/annurev.fl.16.010184.001211.
  4. Bearman, P.W., Johanning, L. and Owen, J.C. (2001), "Large-scale laboratory experiments on vortex-induced vibration", Proceedings of the 20th international conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil, June.
  5. Bernitsas, M.M., Ben-Simon, Y., Raghavan, K. and Garcia, E.M.H. (2009), "The VIVACE converter: Model tests at high damping and Reynolds number around 105", J. Offshore Mech. Art., 131. https://doi.org/10.1115/1.2979796.
  6. Bernitsas, M.M., Raghavan, K., Ben-Simon, Y. and Garcia, E.M.H. (2008), "VIVACE (Vortex Induced Vibration Clean Energy): A new concept in generation of clean and renewable energy from fluid flow", J. Offshore Mech. Art., 131(4).https://doi.org/10.1115/1.2957913.
  7. Bing, S.T., Min, Y.J., Xin, L. and Fei X.L. (2011), "Experimental investigation on wave run-up characteristics along columns and air gap response of semi-submersible platform", J. Hydrodynam., 23(5), 625-636. https://doi.org/10.1016/S1001-6058(10)60158-8.
  8. Blevins, R.D. (1990), "Flow induced vibrations", Van Nostrand Reinhold: Neywork, 2nd edition-1990.
  9. Blevins, R.D. and Burton, T.E. (1976), "Fluid forces induced by vortex shedding", J. Fluid. Eng., 95, 19-24. https://doi.org/10.1115/1.3448196.
  10. Bourguet, R. and Triantafyllou, M. S. (2015), "Vortex-induced vibrations of a flexible cylinder at large inclination angle", Philos. T. Roy. Soc.A: Math. Phys. Eng. Sci., 373(2033), 20140108. https://doi.org/10.1098/rsta.2014.0108.
  11. Bourguet, R., Karniadakis, G.E. and Triantafyllou, M.S. (2011a), "Vortex-induced vibrations of a long flexible cylinder in shear flow", J. Fluid. Eng., 677, 342-382. https://doi.org/10.1017/jfm.2011.90.
  12. Bourguet, R., Karniadakis, G.E. and Triantafyllou, M.S. (2011b), "Lock-in of the vortex-induced vibrations of a long tensioned beam in shear flow", J. Fluid. Struct., 27(5-6), 838-847. https://doi.org/10.1016/j.jfluidstructs.2011.03.008.
  13. Bourguet, R., Lucor, D. and Triantafyllou, M.S. (2012), "Mono-and multi-frequency vortex-induced vibrations of a long tensioned beam in shear flow", J. Fluid. Struct., 32, 52-64. https://doi.org/10.1016/j.jfluidstructs.2011.05.008.
  14. Bowers, J., Morton, I. and Mould, G. (1997), "Multivariate extreme value analysis of a moored semi-submersible", 10(6), 443-463. https://doi.org/10.1016/S0951-8339(97)80001-9.
  15. Brown, D.T. and Mavrakos, S. (1999), "Comparative study on mooring line dynamic loading", Mar. Struct., 12, 131-151. https://doi.org/10.1016/S0951-8339(99)00011-8.
  16. Chen, C.R. and Chen, H.C. (2015), "CFD simulation of vortex induced motions of a deep draft semisubmersible platform", Proceedings of the 25th International Offshore and Polar Engineering Conference, ISOPE-2015, Hawaai, USA, June, 21-26.
  17. Cifuentes, C., Kim, S., Kim, M.H. and Park, W.S. (2015), "Numerical simulation of the coupled dynamic response of a submerged floating tunnel with mooring lines in regular waves", Ocean Syst. Eng., 5(2), 109-123. https://doi.org/10.12989/ose.2015.5.2.109.
  18. Dale, J.R., Nenzel, H. and McCandles, J. (1966), "Dynamic characteristics of underwater cables-flow induced transverse vibration", U.S. naval Air Development center, Johnsville, Pa. report NADC-AV-6620.
  19. De Wilde, J.J. and Huijsmans, R.H.M. (2004), "Laboratory investigation of long riser VIV response", Proceedings of the 14th International Offshore and polar Engineering Conference, ISOPE-2004, Toulon, France, May, 23-24.
  20. Ding, L., Zhang, L., Wu, C., Mao, X. and Jiang, D. (2014), "Flow induced motion and energy harvesting of bluff bodies with different cross sections", Energ. Convers. Manage., 91, 416-426. https://doi.org/10.1016/j.enconman.2014.12.039.
  21. Domala, V. and Sharma, R. (2018), "An experimental study on vortex-induced vibration response of marine riser with and without semi-submersible", Proceedings of the Institution of Mechanical Engineers, Part M: J. Engineering for the Maritime Environment, 232(2), 176-198. https://doi.org/10.1177/1475090217691411.
  22. Domala, V. and Sharma, R. (2019), "Design and development of an efficient computer simulation model for response analysis of a moored semi-submersible", The Transactions of The Royal Institution of Naval Architects (Transactions RINA Part A) - Int. J. Maritime Eng., 161(1), 13-40. https://doi.org/10.5750/ijme.v161iA1.1078.
  23. Domala, V. and Sharma, R. (2020), "An experimental study on vortex-induced motion responses of a moored semi-submersible with and without riser", Proceedings of the Institution of Mechanical Engineers, Part M: J. Eng. Maritime Environ., 234(2), 346-373. https://doi.org/10.1177/1475090219894805.
  24. Eom, T.S., Kim, M.H., Bae, Y.H. and Cifuentes, C. (2014), "Local dynamic buckling of FPSO steel catenary riser by coupled time-domain simulations", Ocean Syst. Eng., 4(3), 215-241. https://doi.org/10.12989/ose.2014.4.3.215.
  25. Eswaran, M., Goyal, P., Reddy, G.R., Singh, R.K. and Vaze, K.K. (2013), "Fluid-structure interaction analysis of sloshing in an annular-sectored water pool subject to surge motion", Ocean Syst. Eng., 3(3), 1-21. https://doi.org/10.12989/ose.2013.3.3.181.
  26. Facchinetti, M.L., De Langre, E. and Biolley, F. (2004), "Coupling of structure and wake oscillators in vortex-induced vibrations", J. Fluid. Struct., 19(2), 123-140. https://doi.org/10.1016/j.jfluidstructs.2003.12.004.
  27. Feng, C.C. (1968), "The measurement of vortex-induced effects in flow past stationary and oscillating cylinder and D-section cylinders", M.Sc. Thesis, University of British Columbia, Canada.
  28. Fischer, F.J., Liapis, S.I. and Kallinderis, Y. (2004), "Mitigation of current-driven, vortex-induced vibrations of a spar platform via "SMART" thrusters", J. Offshore Mech. Arct. Eng., 126, 96-104. https://doi.org/10.1115/1.1643086
  29. Fujarra, A.L.C., Goncalves, R.T., Faria, F., Cueva, M., Nishimoto, K. and Siqueira, E.F.N. (2009), "Mitigation of vortex-induced motions of a monocolumn platform", Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2009-79380, Honolulu, Hawaii, May 31 - June 5. https://doi.org/10.1115/OMAE2009-79380.
  30. Gao, Y., Fu, S., Ren, T., Xiong, Y. and Song, L. (2015), "VIV response of a long flexible riser fitted with strakes in uniform and linearly sheared currents", Appl. Ocean Res., 52, 102-114. https://doi.org/10.1016/j.apor.2015.05.006.
  31. Goncalves, R.T., Fujarra A.L.C., Rosetti, G.F., Kogishi, A.M. and Koop, A. (2015), "Effects of column designs on the VIM response of deep-draft semisubmersible platforms", Proceedings of the 25th International Offshore and Polar Engineering Conference, ISOPE-2015, Kona, Big Island, Hawaai, USA, June 21-26.
  32. Goncalves, R.T., Fujarra, A.L.C., Rosetti, G.F. and Nishimoto, K. (2010b), "Mitigation of vortex-induced motion (VIM) on monocolumn platform: Forces and movements", J. Offshore Mech. Arct., 132, 041102-1-041102-16. https://doi.org/10.1115/1.4001440.
  33. Goncalves, R.T., Rosetti, G.\F., Fujarra, A.L.C. and Nishimoto, K. (2012a), "An overview of relevant aspects on VIM of spar and monocolumn platforms", J. Offshore Mech. Arct., 134, 014501 1-7.
  34. Goncalves, R.T., Rosetti, G.F., Franzini, G.R., Fujarra, A.L.C. and Nishimoto, K. (2010a), "Case study of vortex-induced motions (VIM) on monocolumn platform applying the Hilbert-Huang Transform method", Proceedings of the 20th International Offshore and Polar Engineering Conference, ISOPE-2010, Beijing, China, June, 20-25.
  35. Goncalves, R.T., Rosetti, G.F., Fujarra, A.L.C. and Oliverira, A.C. (2012b), "Experimental study on vortex-induced motions of a semisubmersible platform with four square columns, Part I: Effects of current incidence angle and hull appendages", Ocean Eng., 54, 150-169. https://doi.org/10.1016/j.oceaneng.2012.06.032.
  36. Goncalves, R.T., Rosetti, G.F., Fujarra, A.L.C. and Oliverira, A.C. (2013), "Experimental study on vortex - induced motions of a semisubmersible platform with four square columns, Part II: Effects of surface waves, external damping and draft condition", Ocean Eng., 62, 10-24. https://doi.org/10.1016/j.oceaneng.2013.01.019.
  37. Gordon, A. (1967), "Circulation of the Caribbean sea", J. Geophys. Res., 72 (24), 6207-6223. https://doi.org/10.1029/jz072i024p06207.
  38. Gosain, G.D. and Sharma, R. (2011), "Conceptual design of an ultra-low motion new-age semi-submersible platform", J. Inst. Engineers (India) in Marine Eng. [MR], 92, 3-10.
  39. Gosain, G.D., Sharma, R. and Kim, T.W. (2017), "An optimization model for preliminary stability and configuration analyses of semi-submersibles", Int. J. Maritime Eng., 159(3), 249-270. https://doi.org/10.5750/ijme.v159iA3.1028.
  40. Griffin, O.M. and Ramberg, S.E. (1982), "Some recent studies of vortex shedding with application to marine tubulars and risers", J. Energ. Resour. Technol., 104, 2-13. https://doi.org/10.1115/1.3230377.
  41. Griffin, O.M., Skop, R.A. and Ramberg, S.E. (1975), "The resonant, vortex-excited vibrations of structures and cable systems", Proceedings of the 7th annual Offshore Technology conference, OTC 2319, Houston, Texas, May, 5-8. https://doi.org/10.4043/2319-MS.
  42. Han, X., Tang, Y., Feng, Z., Meng, Z., Qiu, A., Lin, W. and Wu, J. (2018), Vortex-Induced Vibration of a Marine Riser: Numerical Simulation and Mechanism Understanding, New Innovations in Engineering Education and Naval Engineering. IntechOpen.
  43. Hartlen, R.T., Baines, W.D. and Currie, I.G. (1968), "Vortex excited oscillations of a circular cylinder, University of Toronto", Report UTME-TP 6809.
  44. Hong, K.S. and Shah, U.H. (2018), "Vortex-induced vibrations and control of marine risers: A review", Ocean Eng., 152, 300-315. https://doi:10.1016/j.oceaneng.2018.01.086.
  45. Hong, Y., Choil, Y., Lee, J. and Kim, Y. (2008), "Vortex-induced motion of a deep-draft semisubmersible in current and waves", Proceedings of the 18th International Offshore and Polar Engineering Conference, ISOPE-2008, Vancouver, BC, Canada, July, 6-11.
  46. Hourigan, K., Thompson, M.C. and Tan, B.T. (2001), "Self-sustained oscillations in flows around long blunt plates", J. Fluid. Struct., 15(3-4), 387-398. https://doi.org/10.1006/jfls.2000.0352.
  47. Hover, F.S., Miller, S.N. and Triantafyllou, M.S. (1997), "Vortex-Induced vibration of marine cables: experiments using force feedback", J. Fluid. Struct., 11, 307-326. https://doi.org/10.1006/jfls.1996.0079.
  48. Hu, X., Zhang, X. and You, Y. (2019), "Experimental studies of the unsteady hydrodynamic loads on a tension-leg platform at high Reynolds numbers", J. Fluid. Struct., 87, 263-283. https://doi.org/10.1016/j.jfluidstructs.2019.03.024.
  49. Huang, H. and Chen, H.C. (2020), "Investigation of mooring damping effects on vortex-induced motion of a deep draft semi-submersible by coupled CFD-FEM analysis", Ocean Eng., 210, 107418. https://doi.org/10.1016/j.oceaneng.2020.107418.
  50. Hujis, F., Rogier de, B. and Feike, S. (2014), "Concept design verification of a semisubmersible floating wind turbine using coupled simulations", Energy Procedia, 53, 2-12. https://doi.org/10.1016/j.egypro.2014.07.210.
  51. Hujis, F.A. (2007), "The influence of steel catenary risers on the first order motions of a semisubmersible", Proceedings of the 17th International Offshore and Polar Engineering Conference, Lisbon, Portugal, July, 1-6.
  52. Irani, M., Jennings, T., Geyer, J. and Krueger, E. (2015), "Some aspects of vortex induced motions of a multi-column floater", Proceedings of the 34th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2015-41164, St. John's, NL, Canada, May 31 - June 5. https://doi.org/10.1115/OMAE2015-41164.
  53. Jia, L., Liu, Y., Zhang, M., Fu, S. and Ren, H. (2022), "Experimental Research on Vortex-Induced Force Characteristics of Flexible Riser with Buoyancy Module and Strakes", Appl. Sci., 12(12), 6180. https://doi.org/10.3390/app12126180.
  54. Johns, W., Townsend, T., Fratantoni, D. and Wilson, W. (2002), "On the Atlantic inflow to the Caribbean sea, deep-sea research part I", Oceanographic Research Papers, 49 (2), 211-243. https://doi.org/10.1016/s0967-0637(01)00041-3.
  55. Jones, G. and Lamb, W.S. (1993), "The vortex induced vibration of marine risers in sheared and critical flows", Wave Kinematics and Environmental Forces, Advances in Underwater Technology, Ocean Science and Offshore Engineering, 29, 209-238. https://doi.org/10.1007/978-94-017-3663-3_11.
  56. Kamble, C. and Chen, H.C. (2016), "CFD prediction of vortex induced vibrations and fatigue assessment for deepwater marine risers", Ocean Syst. Eng., 6(4), 325-344. https://doi.org/10.12989/ose.2016.6.4.325.
  57. Khalak, A. and Williamson, C.H.K. (1996), "Dynamics of a hydro elastic cylinder with very low mass and damping", J. Fluid. Struct., 10, 455-472. https://doi.org/10.1006/jfls.1996.0031.
  58. Kim, E.S. and Bernitsas, M.M. (2016), "Performance prediction of horizontal hydrokinetic energy converter using multiple-cylinder synergy in flow induced motion", Appl. Energ., 170, 92-100. https://doi.org/10.1016/j.apenergy.2016.02.116.
  59. King, R. (1948), "Vortex excited structural oscillations of a circular cylinder in steady currents", Proceedings of the Ocean Technology Conference, 143-154, Houston, Texas, USA, May 6-8. https://www.onepetro.org/conference-paper/OTC-1948-MS.
  60. Kirk, C.L. (1985), "Resonant heave motions of semisubmersible vessels", Ocean Eng., 12(2), 177-184. https://doi.org/10.1016/0029-8018(85)90080-0.
  61. Konstantinidis, E., Dorogi, D. and Baranyi, L. (2021), "Resonance in vortex-induced in-line vibration at low Reynolds numbers", J. Fluid Mech., 907, A34. https://doi:10.1017/jfm.2020.850.
  62. Koop, A., de Wilde, J., Fujarra, A.L.C., Rijken, O., Linder, S., Lennblad, J., Huag, N. and Phadke, A. (2016), "Investigations on reasons for possible difference between VIM response in the field and in model tests", Proceedings of the 35th international conference on Ocean, Offshore and Arctic Engineering, OMAE2016-54746, in Proceedings of the ASME, Busan, South Korea, June 19-24. https://doi.org/10.1115/OMAE2016-54746.
  63. Kretschmer, T.R., Edgerton, G.A., Black, S.A. and Albertsen, N.D. (1975), "SEACON II: An instrumented tri-moor for evaluating cable structure design methods", Proceedings of the Offshore Technology Conference, OTC-2365-MS, Houston, Texas, May, 5-8. https://doi.org/10.4043/2365-MS.
  64. Kurian, V.J., Ng, C.Y. and Liew, M.S. (2013), "A numerical and experimental study on motion responses of semisubmersible platforms subjected to short crested waves", Proceedings of the 11th International Conference on Vibration Problems, Lisbon, Portugal, September, 9-12.
  65. Lindenburg, C. (2012), "Technical Report ECN-I--05-005 r11: PHATAS release 'JAN-2012b' user's manual", Energy Research Centre of the Netherlands (ECN). Petten; 2012, website address: www.ecn.nl/publications
  66. Liu, G., Li, H., Qiu, Z., Leng, D., Li, Z. and Li, W. (2020), "A mini review of recent progress on vortex-induced vibrations of marine risers", Ocean Eng., 195, 106704. https://doi.org/10.1016/j.oceaneng.2019.106704.
  67. Liu, M. Xiao, L., Lu, H. and Xiao, X. (2017), "Experimental study on vortex-induced motions of a semi-submersible with square columns and pontoons at different draft conditions and current incidences", Int. J. Naval Architect. Ocean Eng., 9(3), 326-338, https://doi.org/10.1016/j.ijnaoe.2016.11.003.
  68. Liu, M., Xiao, L., Lu, H. and Shi, J. (2016), "Experimental investigations into the influences of pontoon and column configuration on vortex-induced motions of deep-draft semisubmersibles", Ocean Eng., 123, 262-277. https://doi.org/10.1016/j.oceaneng.2016.07.007.
  69. Madjid, M., Quentin, M., Zhen, G. and Torgeir, M. (2011), "Hydroelastic code-to-code comparison for a tension leg spar-type floating wind turbine", Mar. Struct., 24, 412-435. https://doi.org/10.1016/j.marstruc.2011.05.006.
  70. Maeda, H., Tomoki, I., Koichi, M. and Chang-kyu, R. (2000), "Time-domain analyses of elastic response and second-order mooring force on a very large floating structure in irregular waves", Mar. Struct., 13, 279-299. https://doi.org/10.1016/S0951-8339(00)00032-0.
  71. Maksoud, J. (2005), "Improved strake design reduces spar VIV", Offshore, Article 16764376, website address: www.offshore-mag.com/home/article/16764376/improved-strake-design-reduces-spar-viv.
  72. Marcio, Y. and Celso, K.M. (2007), "Dynamic positioning of floating platform coupled with drilling riser", 40PDPETRO, Campinas, SP, 21-24 October.
  73. Martin, B. and Rijken, O. (2012), "Experimental analysis of surface geometry, external damping and waves on semisubmersible vortex induced motions", Proceedings of the 31st International Conference on Ocean, Offshore and Arctic Engineering, OMAE2012-83689, 809-816, in Proceedings of the ASME, Rio de Janeiro, Brazil, June, 1-6. https://doi.org/10.1115/OMAE2012-83689.
  74. Maximiano, A.S., Koop, A., de Wilde, J. and Goncalves, R.T. (2016), "Experimental study on the sensitivity of Vortex-Induced Motions (VIM) of a semisubmersible floater to damping and mass ratio", Proceedings of the 26th International Offshore and Polar Engineering Conference, ISOPE-2016, Rhodes, Greece, June 26- July 1. ISBN: 978-1-880653-88-3.
  75. Meng, D. and Chen, L. (2012), "Nonlinear free vibrations and vortex-induced vibrations of fluid-conveying steel catenary riser", Appl. Ocean Res., 34, 52-67. https://doi.org/10.1016/j.apor.2011.10.002.
  76. Mukundan, H., Hover, F.S. and Triantafyllou, M.S. (2010), "A systematic approach to riser VIV response reconstruction", J. Fluid. Struct., 26(5), 722-746. https://doi.org/10.1016/j.jfluidstructs.2010.04.001.
  77. Naudascher, E. and Rockwell, D. (2012), Flow-induced vibrations: An engineering guide, International Association for Hydraulic Research, 7 (Corrected reissue of first Ed.). Mineola, New York, USA (A. A. Balkema Publishers, Rotterdam, Netherlands): (NB. Reissue contains additional errata list in appendix.) Courier Corporation.
  78. Pallan, C.A. and Sharma, R. (2022), "A computer based simulation model for the fatigue damage assessment of deep water marine riser", Ocean Syst. Eng., 12(1), 87-142. https://doi.org/10.12989/ose.2022.12.1.087.
  79. Park, M.S., Jeong, Y.J., You, Y.J., Lee, D.H. and Kim, B.C. (2014), "Numerical analysis of a hybrid substructure for offshore wind turbines", Ocean Syst. Eng., 4(3), 169-183. https://doi.org/10.12989/ose.2014.4.3.169.
  80. Paula, P.B., Julio, C., Paula, G.C., Heather, H., Amy, B., Peter, H. and Robert, L. (2018), "Dominant circulation patterns of the deep gulf of Mexico", J. Phys. Oceanography, 48(3), 511, https://doi.org/10.1175/JPO-D-17-0140.1.
  81. Placzek, A., Sigrist, J.F. and Hamdouni, A. (2009), "Numerical simulation of an oscillating cylinder in a cross-flow at low Reynolds number: Forced and free oscillations", Comput. Fluids, 38(1), 80-100. https://doi.org/10.1016/j.compfluid.2008.01.007.
  82. Ramirez, J.M. (2021), "A coupled formulation of fluid-structure interaction and piezoelectricity for modeling a multi-body energy harvester from vortex-induced vibrations", Energ. Convers. Manage., 249, 114852. https://doi.org/10.1016/j.enconman.2021.114852.
  83. Rijken, O. (2014), "Examing the effects of scale, mass ratios and column shapes on the vortex induced motion response of a semisubmersible through CFD analyses", Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering, in Proceedings of the ASME, OMAE2014-23471, June, 8-13. https://doi.org/10.1115/OMAE2014-23471.
  84. Rijken, O. and Leverette, S. (2008), "Experimental study into vortex induced motion response of semisubmersibles with sqaure columns", Proceedings of the 27th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2008-57396, in Proceedings of the ASME, Estoril, Portugal, June, 15-20. https://doi.org/10.1115/OMAE2008-57396.
  85. Rijken, O. and Leverette, S. (2009), "Field measurements of vortex induced motions of a deep draft semisubmersible", Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2009-79380, 739-746, in the Proceedings of the ASME, Honolulu, Hawaii, May 31 - June 5. https://doi.org/10.1115/OMAE2009-79803.
  86. Rijken, O., Schuurmans, S. and Leverette, S. (2011), "Experimental investigations into the influences of SCRS and appurtenances on deep draft semisubmersible vortex induced motion response", Proceedings of the 30th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2011-49365, 269-279, in Proceedings of the ASME, Rotterdam, The Netherlands, June, 19-24. https://doi.org/10.1115/OMAE2011-49365.
  87. Sarpkaya, T. (1979), "Vortex-induced oscillations: A selective review", J. Appl. Mech., 46(2), 241-258. https://doi:10.1115/1.3424537.
  88. Sarpkaya, T. (2004), "A critical review of the intrinsic nature of vortex-induced vibrations", J. Fluid. Struct., 19(4), 389-447. https://doi:10.1016/j.jfluidstructs.2004.02.005.
  89. Sarpkaya, T., Isaacson, M. and Wehausen, J.V. (1982), Mechanics of wave forces on offshore structures, Van Nostrand Reinhold.
  90. Scruton, C. (1963), "On the wind excited oscillation of stacks, towers and masts", Proceedings of the conference on wind effects on buildings and structures, held in Teddington, England, June, National Physical laboratory.
  91. Sharma, R. and Sha, O.P. (2005), "Practical hydrodynamic design of bulbous bows for ships", Naval Engineers J., 117(1), 57-76. https://doi.org/10.1111/j.1559-3584.2005.tb00321.x.
  92. Sharma, R., Kim, T.W., Sha, O.P. and Misra, S.C. (2009), "Semisubmersible design faces challenges", Offshore Marine Technology (OMT), 3, 22-30.
  93. Sharma, R., Kim, T.W., Sha, O.P., and Misra, S.C. (2010), "Issues in offshore platform research-Part 1: Semi-submersibles", Int. J. Naval Architect. Ocean Eng., 2(3), 155-170. https://doi.org/10.2478/IJNAOE-2013-0032.
  94. Sharma, R., Misra, S.C. and Sha, O.P. (2009), "Deepwater drilling designs-System integration", Mar. Engineers Rev. (MER), 41-44.
  95. Sharma, R., Misra, S.C. and Sha, O.P. (2009), "Drillships of semi-submersibles for deep waters", Mar. Engineers Rev. (FEV), 36-41.
  96. Skop, R.A., Griffin, O.M. and Ramberg, S.E. (1977), "Strumming predictions for the SEACON II experimental mooring", Presented at 9th annual Offshore Technology conference, Houston, Texas, May. https://doi.org/10.4043/2884-MS.
  97. Son, M.J., Lee, S.C., Kwon, K.C., Kim, T.W. and Sharma, R. (2011), "Configuration estimation method for preliminary cost of ships based on engineering bills of materials". J. Mar. Sci. Technol., 16(4), 367-378. https://doi.org/10.1007/s00773-011-0139-9.
  98. Song. A., Ping, S.L., Yong, L. and Qiang, W. (2010), "Evaluation of station keeping systems for deepwater drilling semisubmersibles", Mar. Sci. Appl., 9, 312-316. https://doi.org/10.1007/s11804-010-1013-6.
  99. Soti, A.K., Thompson, M.C., Sheridan, J. and Bhardwaj, R. (2017), "Harnessing electrical power from vortex-induced vibration of a circular cylinder", J. Fluid. Struct., 70, 360-373. https://doi.org/10.1016/j.jfluidstructs.2017.02.009.
  100. Strouhal, V. (1878), "Ueber eine besondere Art der Tonerregung", Annalen Der Physik, 241(10), 216-251. https://doi.org/10.1002/andp.18782411005.
  101. Sumer, B.M. (2006), "Hydrodynamics around cylindrical strucures", Advanced series on ocean engineering 26, World Scientific Press, Singapore.
  102. Sunil, D.K. and Mukhopadhyay, M. (1995), "Free vibration of semisubmersibles: A parametric study", Ocean Eng., 22(5), 489-502. https://doi.org/10.1016/0029-8018(94)00012-V.
  103. Tahar, A. and Kim, M.H. (2008), "Coupled-dynamic analysis of floating structures with polyester mooring lines", Ocean Eng., 35, 1676-1685. https://doi.org/10.1016/j.oceaneng.2008.09.004.
  104. Takagi, M., Ichi, A.S., Seiji, T., Kunio, T. and Naonosuke, T. (1985), "A comparison of methods for calculating the motions of a semisubmersible", Ocean Eng., 12(1), 45-97. https://doi.org/10.1016/0029-8018(85)90010-1.
  105. Tamura, Y. (2020), "Mathematical models for understanding phenomena: Vortex-induced vibrations", Japan Architect. Rev., 3(4), 398-422. https://doi.org/10.1002/2475-8876.12180.
  106. TMAA (2011), "Technical Manual Ansys - AQWA v 14.0", website:www.ansys.com.
  107. TMHAWC (2015), "HAWC2 Manual v 4.6", website: www.hawc2.dk.
  108. TMUSFOS (2015), "Technical Manual USFOS", website: www.usfos.no.
  109. UG (2015), "User guide for Shear7 V4.9", AMOG Consulting, Australia, 7th December 2015, website address: www.shear7.com.
  110. Van Dyke, M. and Van Dyke, M. (1982), "An album of fluid motion", 176, Stanford: Parabolic Press.
  111. Van Santen, J.A. (1985), "Approximative formulae for calculating the motions of semisubmersible", Ocean Eng., 12(3), 235-252. https://doi.org/10.1016/0029-8018(85)90015-0.
  112. Vandiver, J.K. (1983), "Drag coefficients of long flexible cylinders", Proceedings of the Offshore technology conference, Houston, Texas, USA, May 2-5. https://www.onepetro.org/conference-paper/OTC-4490-MS.
  113. Vandiver, J.K. (2002), "A universal reduced damping parameter for prediction of vortex-induced vibration", Proceedings of the 21st international conference on OMAE, Oslo, June, 23-28. https://doi.org/10.1115/OMAE2002-28292.
  114. Verley, R.L.P. and Every, M.J. (1977), "Wave induced vibration of flexible cylinders", Proceedings of the Ocean Technology Conference, Houston, Texas, USA, May 2-5. https://www.onepetro.org/conference-paper/OTC-2899-MS.
  115. Vickery, B.J. and Watkins, R.D. (1964), "Flow-induced vibrations of cylindrical structures", In Hydraulics Fluid Mech., 213-241. Pergamon. https://doi.org/10.1016/B978-0-08-010291-7.50018-5.
  116. Von Karman, T. (1912), "Uber den Mechanismuss des Widerstandes den ein bewegter Korper in einen Flussigkeit Erfahrt", Nachrichten der K. Gesellschaft der Wissenschaften zu Gottingen, 547-556.
  117. Waals, O.J., Phadke, A.C. and Bultema, S. (2007), "Flow induced motions of multi column floaters", Proceedings of the 26th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2007-29539, in Proceedings of the ASME, San Diego, California, USA, June, 10-15. https://doi.org/10.1115/OMAE2007-29539.
  118. Wang, J., Fu, S., Baarholm, R., Wu, J. and Larsen, C.M. (2015a), "Out-of-plane vortex-induced vibration of a steel catenary riser caused by vessel motions", Ocean Eng., 109, 389-400. https://doi.org/10.1016/j.oceaneng.2015.09.004.
  119. Wang, Y., Gao, D. and Fang, J. (2015b), "Study on lateral vibration analysis of marine riser in installation-via variational approach", J. Nat. Gas Sci. Eng., 22, 523-529. https://doi.org/10.1016/j.jngse.2014.12.012.
  120. Wang, Y., Yang, J., Peng, T. and Li, X. (2009), "Model test study on vortex-induced motions of a floating cylinder", Proceedings of the 28th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2009-79134, in Proceedings of the ASME, Honolulu, Hawaii, May 31 - June 5. https://doi.org/10.1115/OMAE2009-79134.
  121. Williamson, C.H.K. and Govardhan, R. (2004), "Vortex-induced vibrations", Annu. Rev. Fluid Mech., 36, 413-455. https://doi:10.1146/annurev.fluid.36.050802.122128.
  122. Xu, Q. (2011), "A new semisubmersible design for improved heave motion, vortex-induced motion and quayside stability", Proceedings of the 30th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2011-49118, 95-103, in Proceedings of the ASME, Rotterdam, The Netherlands, June, 19-24. https://doi.org/10.1115/OMAE2011-49118.
  123. Xu, W.H., Zeng, X.H. and Wu, Y.W. (2008), "High aspect ratio (L/D) riser VIV prediction using wake oscillator model", Ocean Eng., 35, 1769-1774. https://doi.org/10.1016/j.oceaneng.2008.08.015.
  124. Xu, W.H., Zeng, X.H., Wu, Y.W., Zeng, X.H., Xing-Fu, Z. and Xing, Y.J. (2010), "A new wake oscillator model for predicting vortex induced vibration of a circular cylinder", J. Hydrodynam., 22(3), 381-386. https://doi.org/10.1016/S1001-6058(09)60068-8.
  125. Yang, M., Teng, B., Ning, D. and Shi, Z. (2012), "Coupled dynamic analysis for wave interaction with truss spar and its mooring line/riser system in time domain", Ocean Eng., 39, 72-87. https://doi.org/10.1016/j.oceaneng.2011.11.002.
  126. Ye, W., Shanks, J. and Fang, J. (2003), "Effects of fully coupled and quasi-static semisubmersible vessel motions on steel catenary riser's wave loading fatigue", Proceedings of the Offshore Technology Conference, Houston, Texas, U.S.A, May 2003. https://doi.org/10.4043/15105-MS.
  127. Yilmaz, O. and Incecik, A. (1995), "Extreme motion response analysis of moored semisubmersibles", Ocean Eng., 23, 497-517. https://doi.org/10.1016/0029-8018(95)00057-7.
  128. Zhang1a, X.T., Li, Z.Y. and Fu, S.X. (2014), "Study of the flow around a cylinder from the subcritical to supercritical regimes", Ocean Syst. Eng., 4(3), 185.200. https://doi.org/10.12989/ose.2014.4.3.185.
  129. Zhao, J., Nemes, A., Lo Jacono, D. and Sheridan, J. (2018a), "Branch/mode competition in the flow-induced vibration of a square cylinder", Philos. T. Roy. Soc. A: Math., Phys. Eng. Sci., 376(2126), 20170243. https://doi.org/10.1098/rsta.2017.0243.
  130. Zhao, W., Zou, L., Wan, D. and Hu, Z. (2018b), "Numerical investigation of vortex-induced motions of a paired-column semi-submersible in currents", Ocean Eng., 164, 272-283. https://doi.org/10.1016/j.oceaneng.2018.06.023.
  131. Zou, J. (2012), "Semisubmersible platforms with steel catenary risers for Western Australia and Gulf of Mexico", Ocean Syst. Eng., 2(2), 99-113. https://doi.org/10.12989/ose.2012.2.2.099.