DOI QR코드

DOI QR Code

Structural Performance Evaluation of Offshore Modular Pier Connection using Ultra-high Performance Concrete

초고성능 콘크리트를 활용한 해상 모듈러 잔교 연결부의 구조성능 평가

  • 이동하 ((주)포엠 구조사업부) ;
  • 김경철 (한국건설기술연구원 남북한인프라특별위원회) ;
  • 강재윤 (한국건설기술연구원 구조연구본부) ;
  • 류금성 (한국건설기술연구원 구조연구본부) ;
  • 고경택 (한국건설기술연구원 남북한인프라특별위원회)
  • Received : 2022.09.19
  • Accepted : 2022.09.27
  • Published : 2022.09.30

Abstract

In this study, offshore modular pier system using the ultra-high performance concrete was developed for the offshore construction environment. For the application of offshore modular pier system, the design, fabrication, and construction performance evaluation were performed using ultra-high performance concrete a compressive strength 120 MPa or more and a direct tensile strength 7 MPa or more. For offshore piers previously constructed with precast concrete, it was intended to verify the idea and possibility of solving errors due to position or vertical deformation during the driving of the foundation pile part during the construction stage. Furthermore, a offshore modular pier system was fabricated with ultra-high performance concrete for the construction performance evaluation. The results showed that a offshore modular pier system secured about 9 % of sectional performance of load bearing capacity under ultimate load conditions. If the offshore modular pier system developed through this study is utilized in the future, it is judged that competitiveness due to sufficient durability and constructability can be secured.

본 연구에서는 해양 건설환경을 고려한 초고성능 콘크리트 해상 모듈러 잔교 시스템을 개발하고자 한다. 해상 모듈러 잔교 시스템은 최근에 개발된 압축강도 120 MPa 이상, 직접인장강도 7 MPa 이상을 갖는 초고성능 콘크리트 적용하여 설계, 제작 및 구조성능평가를 통하여 적용 가능성을 분석하였다. 기존에 프리캐스트 콘크리트로 시공된 해상 잔교는 시공단계에서 기초 파일부 항타 시 위치 또는 수직 변형으로 인한 오차를 해결하기 위한 아이디어와 가능성을 검증하고자 하였다. 또한, 구조성능 평가를 위하여 잔교 실험체를 초고성능 콘크리트를 이용하여 제작하였다. 휨 실험을 통하여 하중 분석을 수행한 결과, 예측 휨강도 대비 측정 휨강도는 극한한계상태에서 약 9 % 이상의 내하력을 확보하여 본 실험에서 요구하는 성능을 만족하였다. 향후 본 연구를 통하여 개발된 해상 모듈러 잔교 시스템을 활용한다면 충분한 내구성과 시공성으로 인한 경쟁력을 확보할 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다(과제번호 20220329-001, 슈퍼콘크리트 적용 장수명 모듈러 해상 교량 시스템 상용화 기술개발).

References

  1. Choi, J.G., Lee, G.C., Koh, K.T. (2017). The effects of mixture rate and aspect ratio of steel fiber on mechanical properties of ultra high performance concrete, Journal of the Korean Recycled Construction Resources Institute, 5(1), 14-20 [in Korean]. https://doi.org/10.14190/JRCR.2017.5.1.014
  2. Choi, J.W., You, Y.J., Jeong, Y.J., Kwon, S.G., Kim, J.H. (2015). Micro-silica mixed aqua-epoxy for concrete module connection in water : part 2 - structural application and evaluation, Journal of the Korea Concrete Institute, 27(1), 29-35 [in Korean]. https://doi.org/10.4334/JKCI.2015.27.1.029
  3. Hong, S.I., Lee, H.G., Moon, D.H. (2019). Evaluation of pore size distribution and chloride diffusion in steel fiber reinforced mortar depending on supplementary cements, Journal of the Korea Concrete Institute, 31(2), 147-152 [in Korean]. https://doi.org/10.4334/JKCI.2019.31.2.147
  4. Kang, S.T., Park, J.J., Ryu, K.S., Kim, S.W. (2008). Influence of the filler's particle size on the mechanical properties of ultra high performance concrete(UHPC), KSCE Journal of Civil and Environmental Engineering Research, 28(4), 573-580 [in Korean]. https://doi.org/10.12652/KSCE.2008.28.4A.573
  5. KICT. (2020). The Fabrication and Quality Control Guidelines for Fiber Reinforced SUPER Concrete [in Korean].
  6. Kim, K.C., Yang, I.H., Joh, C. (2018). Effects of single and hybrid steel fiber lengths and fiber contents on the mechanical properties of high-strength fiber-reinforced concrete, Advanced in Civil Engineering, Article ID 7826156.
  7. Korea Concrete Institute(KCI) (2019). The Structural Design Guidelines of Fiber Reinforced Concrete, Korea Concrete Institute, 44-49 [in Korean].
  8. Lee, B.Y., Kwon, S.J., Kang, S.T. (2015). Analytical estimation of the performance of marine concrete with mineral admixture, Journal of the Korean Recycled Construction Resources Institute, 3(4), 301-306 [in Korean]. https://doi.org/10.14190/JRCR.2015.3.4.301
  9. Lee, H., Min, J., Chung, W. (2019). Full-scale testing of precast bridge using internal connector in negative moment region, Advances in Civil Engineering, Article IF 6309859.
  10. Park, S.S., Kim, M.W. (2013). Evaluate the concrete mix by type accelerated corrosion test and chloride penetration analysis with artificial seawater cyclic wet and dry condition, Journal of the Korean Recycled Construction Resources Institute, 1(3), 211-218 [in Korean]. https://doi.org/10.14190/JRCR.2013.1.3.211
  11. Ryu, G.S., Koh, K.T., Kim, S.W., Kim, D.G. (2005). Development for penetrative performance improving agent to prevent deterioration of concrete structures, Journal of the Korea Concrete Institute, 17(4), 489-498 [in Korean]. https://doi.org/10.4334/JKCI.2005.17.4.489
  12. Shah, B.N., Sennah, K., ASCE, M., Kianoush, M.R., Tu, S., Lam, C. (2007). Experimental study on prefabricated concrete bridge girder-to-girder intermittent bolted connections system, Journal of Bridge Engineering, 12(5), 570-584. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:5(570)
  13. Vieira, D.R., Moreira, A.L.R., Calmon, J.L., Dominicini, W.K. (2018). Service life modeling of a bridge in a tropical marine environment for durable design, Construction and Building Materials, 163, 315-325. https://doi.org/10.1016/j.conbuildmat.2017.12.080
  14. Yang, I.H., Kim, K.C. (2014). An experimental study on flexural behavior of beams reinforced with zinc-coated rebar, Journal of the Korea Concrete Institute, 26(3), 299-306 [in Korean]. https://doi.org/10.4334/JKCI.2014.26.3.299
  15. Yang, I.H., Joh, C.B., Kim, K.C. (2018). A comparative experimental study on the flexural behavior of high-strength fiber-reinforced concrete and high-strength concrete beams, Advances in Materials Science and Engineering, 2018, Article ID 7390798, 1-13.