Acknowledgement
본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음 (과제번호 22NANO-B156177-03).
References
- Alexander, M.G. (1999). Engineering and Transport Properties of the Interfacial Transition Zone in Cementitious Composites, 20, Rilem Publications.
- Amini, K., Amiri, S.S., Ghasemi, A., Mirvalad, S., Korayem, A. H. (2021). Evaluation of the dispersion of metakaolin-graphene oxide hybrid in water and cement pore solution: can metakaolin really improve the dispersion of graphene oxide in the calcium-rich environment of hydrating cement matrix?, RSC Advances, 11(30), 18623-18636. https://doi.org/10.1039/D1RA01504D
- ASTM C (2016). 109/C 109M-02. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or (50-mm) Cube Specimens), Annual Book of ASTM Standards, 4.
- ASTM C (2018). 348/C 348M-18, Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars, West Conshohocken, PA.
- G.W., Schweitzer, J.S., Scrivener, K.L., Thomas, J.J. (2011). Mechanisms of cement hydration, Cement and Concrete Research, 41(12), 1208-1223. https://doi.org/10.1016/j.cemconres.2010.09.011
- Chen, Y., Li, X., Dong, B., Du, H., Yan, R., Wang, L. (2022). High-temperature properties of cement paste with graphene oxide agglomerates, Construction and Building Materials, 320, 126286. https://doi.org/10.1016/j.conbuildmat.2021.126286
- Duan, P., Shui, Z., Chen, W., Shen, C. (2013). Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete, Construction and Building Materials, 44, 1-6. https://doi.org/10.1016/j.conbuildmat.2013.02.075
- Gao, Y., De Schutter, G., Ye, G., Huang, H., Tan, Z., Wu, K. (2013). Porosity characterization of ITZ in cementitious composites: concentric expansion and overflow criterion, Construction and Building Materials, 38, 1051-1057. https://doi.org/10.1016/j.conbuildmat.2012.09.047
- Gao, Y., Zhu, X., Corr, D.J., Konsta-Gdoutos, M.S., Shah, S.P. (2019). Characterization of the interfacial transition zone of CNF-reinforced cementitious composites, Cement and Concrete Composites, 99, 130-139. https://doi.org/10.1016/j.cemconcomp.2019.03.002
- Karpova, E., Skripkiunas, G., Barauskas, I., Barauskiene, I., Hodul, J. (2021). Influence of carbon nanotubes and polycarboxylate superplasticiser on the Portland cement hydration process, Construction and Building Materials, 304, 124648. https://doi.org/10.1016/j.conbuildmat.2021.124648
- Li, X., Lu, Z., Chuah, S., Li, W., Liu, Y., Duan, W.H., Li, Z. (2017). Effects of graphene oxide aggregates on hydration degree, sorptivity, and tensile splitting strength of cement paste, Composites Part A: Applied Science and Manufacturing, 100, 1-8. https://doi.org/10.1016/j.compositesa.2017.05.002
- Li, Y., Li, Y., Wang, R. (2019). Quantitative evaluation of elastic modulus of concrete with nanoidentation and homogenization method, Construction and Building Materials, 212, 295-303. https://doi.org/10.1016/j.conbuildmat.2019.04.002
- Meng, S., Ouyang, X., Fu, J., Niu, Y., Ma, Y. (2021). The role of graphene/graphene oxide in cement hydration, Nanotechnology Reviews, 10(1), 768-778. https://doi.org/10.1515/ntrev-2021-0055
- Nguyen, H.D., Zhang, Q., Sagoe-Crentsil, K., Duan, W. (2021). Graphene oxide-coated sand for improving performance of cement composites, Cement and Concrete Composites, 124, 104279. https://doi.org/10.1016/j.cemconcomp.2021.104279
- Sharma, S., Kothiyal, N.C. (2015). Influence of graphene oxide as dispersed phase in cement mortar matrix in defining the crystal patterns of cement hydrates and its effect on mechanical, microstructural and crystallization properties. RSC Advances, 5(65), 52642-52657. https://doi.org/10.1039/C5RA08078A
- Sikora, P., Abd Elrahman, M., Stephan, D. (2018). The influence of nanomaterials on the thermal resistance of cement-based composites-a review, Nanomaterials, 8(7), 465. https://doi.org/10.3390/nano8070465
- Wong, H.S., Head, M.K., Buenfeld, N.R. (2006). Pore segmentation of cement-based materials from backscattered electron images, Cement and Concrete Research, 36(6), 1083-1090. https://doi.org/10.1016/j.cemconres.2005.10.006
- Xuan, D.X., Shui, Z.H., Wu, S.P. (2009). Influence of silica fume on the interfacial bond between aggregate and matrix in near-surface layer of concrete, Construction and Building Materials, 23(7), 2631-2635. https://doi.org/10.1016/j.conbuildmat.2009.01.006
- Yan, X., Zheng, D., Yang, H., Cui, H., Monasterio, M., Lo, Y. (2020). Study of optimizing graphene oxide dispersion and properties of the resulting cement mortars, Construction and Building Materials, 257, 119477. https://doi.org/10.1016/j.conbuildmat.2020.119477
- Yu, L., Bai, S., Guan, X. (2022). Graphene oxide-silica nanocomposites reinforced mortars: Mechanical properties, permeability and microstructure, Construction and Building Materials, 344, 128290. https://doi.org/10.1016/j.conbuildmat.2022.128290
- Zhao, L., Guo, X., Liu, Y., Ge, C., Guo, L., Shu, X., Liu, J. (2017). Synergistic effects of silica nanoparticles/polycarboxylate superplasticizer modified graphene oxide on mechanical behavior and hydration process of cement composites, RSC Advances, 7(27), 16688-16702. https://doi.org/10.1039/C7RA01716B