Acknowledgement
This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2021M3A9I4023974), Basic Science Research Program through the NRF of Korea funded by the Ministry of Education (2021R1A6A1A03044501), and the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI) funded by the Ministry of Health & Welfare (HP20C0082). K.J.A. acknowledges the Taif University Researchers Supporting Program (project number: TURSP-2020/128), Taif University, Saudi Arabia.
References
- Dufresne C, Farnworth E. 2000. Tea, Kombucha, and health: a review. Food Res. Int. 33: 409-421. https://doi.org/10.1016/S0963-9969(00)00067-3
- Greenwalt C, Steinkraus K, Ledford R. 2000. Kombucha, the fermented tea: microbiology, composition, and claimed health effects. J. Food Prot. 63: 976-981. https://doi.org/10.4315/0362-028X-63.7.976
- Jayabalan R, Malbasa RV, Loncar ES, Vitas JS, Sathishkumar M. 2014. A review on kombucha tea - microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr. Rev. Food Sci. Food Saf. 13: 538-550. https://doi.org/10.1111/1541-4337.12073
- Arikan M, Mitchell AL, Finn RD, Gurel F. 2020. Microbial composition of Kombucha determined using amplicon sequencing and shotgun metagenomics. J. Food Sci. 85: 455-464. https://doi.org/10.1111/1750-3841.14992
- Villarreal-Soto SA, Bouajila J, Pace M, Leech J, Cotter PD, Souchard J-P, et al. 2020. Metabolome-microbiome signatures in the fermented beverage, Kombucha. Int. J. Food Microbiol. 333: 108778. https://doi.org/10.1016/j.ijfoodmicro.2020.108778
- Gomes RJ, Borges MdF, Rosa MdF, Castro-Gomez RJH, Spinosa WA. 2018. Acetic acid bacteria in the food industry: systematics, characteristics and applications. Food Technol. Biotechnol. 56: 139-151.
- Ramachandran S, Fontanille P, Pandey A, Larroche C. 2006. Gluconic acid: properties, applications and microbial production. Food Technol. Biotechnol. 44: 185-195.
- Banerjee S, Schlaeppi K, van der Heijden MG. 2018. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16: 567-576. https://doi.org/10.1038/s41579-018-0024-1
- Goes-Neto A, Kukharenko O, Orlovska I, Podolich O, Imchen M, Kumavath R, et al. 2021. Shotgun metagenomic analysis of kombucha mutualistic community exposed to mars-like environment outside the international space station. Environ. Microbiol. 23: 3727-3742. https://doi.org/10.1111/1462-2920.15405
- Podolich O, Kukharenko O, Haidak A, Zaets I, Zaika L, Storozhuk O, et al. 2019. Multimicrobial kombucha culture tolerates marslike conditions simulated on low earth orbit. Astrobiology 19: 183-196. https://doi.org/10.1089/ast.2017.1746
- Beghini F, McIver LJ, Blanco-Miguez A, Dubois L, Asnicar F, Maharjan S, et al. 2021. Integrating taxonomic, functional, and strainlevel profiling of diverse microbial communities with bioBakery 3. Elife 10: e65088. https://doi.org/10.7554/eLife.65088
- Kruskal JB. 1964. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29: 115-129. https://doi.org/10.1007/BF02289694
- Bray JR, Curtis JT. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27: 326-349.
- Dixon P. 2003. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14: 927-930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
- Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31: 1674-1676. https://doi.org/10.1093/bioinformatics/btv033
- Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9: 357-359. https://doi.org/10.1038/nmeth.1923
- Menzel P, Ng KL, Krogh A. 2016. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7: 11257. https://doi.org/10.1038/ncomms11257
- Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. 2015. Anvi'o: an advanced analysis and visualization platform for 'omics data. PeerJ 3: e1319. https://doi.org/10.7717/peerj.1319
- Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25: 1043-1055. https://doi.org/10.1101/gr.186072.114
- Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10: 421. https://doi.org/10.1186/1471-2105-10-421
- Sayers EW, Agarwala R, Bolton EE, Brister JR, Canese K, Clark K, et al. 2019. Database resources of the national center for biotechnology information. Nucleic Acids Res. 47: D23-D28. https://doi.org/10.1093/nar/gky1069
- Lee I, Kim YO, Park S-C, Chun J. 2016. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66: 1100-1103. https://doi.org/10.1099/ijsem.0.000760
- Shakya M, Ahmed SA, Davenport KW, Flynn MC, Lo C-C, Chain PS. 2020. Standardized phylogenetic and molecular evolutionary analysis applied to species across the microbial tree of life. Sci. Rep. 10: 1723. https://doi.org/10.1038/s41598-020-58356-1
- Kanehisa M, Sato Y, Morishima K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428: 726-731. https://doi.org/10.1016/j.jmb.2015.11.006
- Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 2068-2069. https://doi.org/10.1093/bioinformatics/btu153
- Papudeshi B, Haggerty JM, Doane M, Morris MM, Walsh K, Beattie DT, et al. 2017. Optimizing and evaluating the reconstruction of Metagenome-assembled microbial genomes. BMC Genomics 18: 915. https://doi.org/10.1186/s12864-017-4294-1
- Lee I, Barh D, Podolich O, Brenig B, Tiwari S, Azevedo V, et al. 2021. Metagenome-assembled genome sequences obtained from a reactivated Kombucha microbial community exposed to a Mars-like environment outside the International Space Station. Microbiol. Resour. Announc. 10: e00549-00521.
- Ng W-L, Bassler BL. 2009. Bacterial quorum-sensing network architectures. Annu. Rev. Genet. 43: 197-222. https://doi.org/10.1146/annurev-genet-102108-134304
- Rutherford ST, Bassler BL. 2012. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2: a012427.
- Solano C, Echeverz M, Lasa I. 2014. Biofilm dispersion and quorum sensing. Curr. Opin. Microbiol. 18: 96-104. https://doi.org/10.1016/j.mib.2014.02.008
- Erental A, Sharon I, Engelberg-Kulka H. 2012. Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biol. 10: e1001281. https://doi.org/10.1371/journal.pbio.1001281
- Yamaguchi Y, Park J-H, Inouye M. 2011. Toxin-antitoxin systems in bacteria and archaea. Annu. Rev. Genet. 45: 61-79. https://doi.org/10.1146/annurev-genet-110410-132412
- Zhang S, Bryant DA. 2011. The tricarboxylic acid cycle in cyanobacteria. Science 334: 1551-1553. https://doi.org/10.1126/science.1210858
- Cushman JC, Bohnert HJ. 1999. Crassulacean acid metabolism: molecular genetics. Annu. Rev. Plant Biol. 50: 305-332. https://doi.org/10.1146/annurev.arplant.50.1.305
- Osmond C. 1978. Crassulacean acid metabolism: a curiosity in context. Annu. Rev. Plant Physiol. 29: 379-414. https://doi.org/10.1146/annurev.pp.29.060178.002115
- Kerovuo J, Reinikainen T, Nyysso?la? A, Kaukinen P, von Weymarn N. 2000. Extreme halophiles synthesize betaine from glycine by methylation. J. Biol. Chem. 275: 22196-22201. https://doi.org/10.1074/jbc.M910111199
- Monobe M, Uzawa A, Hino M, Ando K, Kojima S. 2005. Glycine betaine, a beer component, protects radiation-induced injury. J. Radiat. Res. 46: 117-121. https://doi.org/10.1269/jrr.46.117
- Smith LT, Pocard J-A, Bernard T, Le Rudulier D. 1988. Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti. J. Bacteriol. 170: 3142-3149. https://doi.org/10.1128/jb.170.7.3142-3149.1988
- Shah P, Swiatlo E. 2008. A multifaceted role for polyamines in bacterial pathogens. Mol. Microbiol. 68: 4-16. https://doi.org/10.1111/j.1365-2958.2008.06126.x
- Schneider J, Wendisch VF. 2011. Biotechnological production of polyamines by bacteria: recent achievements and future perspectives. Appl. Microbiol. Biotechnol. 91: 17-30. https://doi.org/10.1007/s00253-011-3252-0
- Kawano Y, Suzuki K, Ohtsu I. 2018. Current understanding of sulfur assimilation metabolism to biosynthesize L-cysteine and recent progress of its fermentative overproduction in microorganisms. Appl. Microbiol. Biotechnol. 102: 8203-8211. https://doi.org/10.1007/s00253-018-9246-4
- Mendoza-Cozatl D, Loza-Tavera H, Hernandez-Navarro A, Moreno-Sanchez R. 2005. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol. Rev. 29: 653-671. https://doi.org/10.1016/j.femsre.2004.09.004