DOI QR코드

DOI QR Code

Novel High-Throughput DNA Part Characterization Technique for Synthetic Biology

  • Bak, Seong-Kun (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Seong, Wonjae (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Rha, Eugene (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Hyewon (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Seong Keun (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kwon, Kil Koang (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Haseong (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Seung-Goo (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2022.07.07
  • Accepted : 2022.07.19
  • Published : 2022.08.28

Abstract

This study presents a novel DNA part characterization technique that increases throughput by combinatorial DNA part assembly, solid plate-based quantitative fluorescence assay for phenotyping, and barcode tagging-based long-read sequencing for genotyping. We confirmed that the fluorescence intensities of colonies on plates were comparable to fluorescence at the single-cell level from a high-end, flow-cytometry device and developed a high-throughput image analysis pipeline. The barcode tagging-based long-read sequencing technique enabled rapid identification of all DNA parts and their combinations with a single sequencing experiment. Using our techniques, forty-four DNA parts (21 promoters and 23 RBSs) were successfully characterized in 72 h without any automated equipment. We anticipate that this high-throughput and easy-to-use part characterization technique will contribute to increasing part diversity and be useful for building genetic circuits and metabolic pathways in synthetic biology.

Keywords

Acknowledgement

This research was supported by a grant from the Next-Generation BioGreen 21 Program (Grant No. PJ015808022022), Rural Development Administration, Republic of Korea, the Bio & Medical Technology Development Program (Grant No. 2021M3A9I4022731) of the National Research Foundation funded by the Ministry of Science and ICT of the Republic of Korea and the Korea Research Institute of Bioscience and Biotechnology (KRIBB) Research Initiative Program (KGM5402221).

References

  1. Voigt CA. 2006. Genetic parts to program bacteria. Curr. Opin. Biotechnol. 17: 548-557. https://doi.org/10.1016/j.copbio.2006.09.001
  2. Endy D. 2005. Foundations for engineering biology. Nature 438: 449-453. https://doi.org/10.1038/nature04342
  3. Canton B, Labno A, Endy D. 2008. Refinement and standardization of synthetic biological parts and devices. Nat. Biotechnol. 26: 787-793. https://doi.org/10.1038/nbt1413
  4. Chen YJ, Liu P, Nielsen AAK, Brophy JAN, Clancy K, Peterson T, et al. 2013. Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat. Methods 10: 659-664. https://doi.org/10.1038/nmeth.2515
  5. Kelly JR, Rubin AJ, Davis JH, Ajo-Franklin CM, Cumbers J, Czar MJ, et al. 2009. Measuring the activity of BioBrick promoters using an in vivo reference standard. J. Biol. Eng. 3: 4. https://doi.org/10.1186/1754-1611-3-4
  6. Yeom SJ, Kim M, Kwon KK, Fu Y, Rha E, Park SH, et al. 2018. A synthetic microbial biosensor for high-throughput screening of lactam biocatalysts. Nat. Commun. 9: 5053. https://doi.org/10.1038/s41467-018-07488-0
  7. Shao B, Rammohan J, Anderson DA, Alperovich N, Ross D, Voigt CA. 2021. Single-cell measurement of plasmid copy number and promoter activity. Nat. Commun. 12: 1475. https://doi.org/10.1038/s41467-021-21734-y
  8. Huang HH, Camsund D, Lindblad P, Heidorn T. 2010. Design and characterization of molecular tools for a synthetic biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res. 38: 2577-2593. https://doi.org/10.1093/nar/gkq164
  9. Schaumberg KA, Antunes MS, Kassaw TK, Xu W, Zalewski CS, Medford JI, et al. 2015. Quantitative characterization of genetic parts and circuits for plant synthetic biology. Nat. Methods 13: 94-100.
  10. Nunez I, Matute T, Herrera R, Keymer J, Marzullo T, Rudge T, et al. 2017. Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering. PLoS One 12: e0187163. https://doi.org/10.1371/journal.pone.0187163
  11. French S, Coutts BE, Brown ED. 2018. Open-source high-throughput phenomics of bacterial promoter-reporter strains. Cell Syst. 7: 339-346.e3. https://doi.org/10.1016/j.cels.2018.07.004
  12. Esling P, Lejzerowicz F, Pawlowski J. 2015. Accurate multiplexing and filtering for high-throughput amplicon-sequencing. Nucleic Acids Res. 43: 2513-2524. https://doi.org/10.1093/nar/gkv107
  13. Engler C, Kandzia R, Marillonnet S. 2008. A One pot, one step, precision cloning method with high throughput capability. PLoS One 3: e3647. https://doi.org/10.1371/journal.pone.0003647
  14. Vick JE, Johnson ET, Choudhary S, Bloch SE, Lopez-Gallego F, Srivastava P, et al. 2011. Optimized compatible set of BioBrickTM vectors for metabolic pathway engineering. Appl. Microbiol. Biotechnol. 92: 1275-1286. https://doi.org/10.1007/s00253-011-3633-4
  15. Potapov V, Ong JL, Kucera RB, Langhorst BW, Bilotti K, Pryor JM, et al. 2018. Comprehensive profiling of four base overhang ligation fidelity by T4 DNA ligase and application to DNA assembly. ACS Synth. Biol. 7: 2665-2674. https://doi.org/10.1021/acssynbio.8b00333
  16. Geissmann Q. 2013. OpenCFU, a new free and open-source software to count cell colonies and other circular objects. PLoS One 8: e54072. https://doi.org/10.1371/journal.pone.0054072
  17. De Coster W, D'Hert S, Schultz DT, Cruts M, Van Broeckhoven C. 2018. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 34: 2666-2669. https://doi.org/10.1093/bioinformatics/bty149
  18. Wick RR, Judd LM, Holt KE. 2019. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol. 20: 129. https://doi.org/10.1186/s13059-019-1727-y
  19. Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34: 3094-3100. https://doi.org/10.1093/bioinformatics/bty191
  20. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. 2009. The Sequence alignment/Map format and SAMtools. Bioinformatics 25: 2078-2079. https://doi.org/10.1093/bioinformatics/btp352
  21. Buschmann T, Bystrykh L V. 2013. Levenshtein error-correcting barcodes for multiplexed DNA sequencing. BMC Bioinformatics 14: 272. https://doi.org/10.1186/1471-2105-14-272
  22. DebRoy HP and PA and RG and S. 2020. Efficient manipulation of biological strings. Biostrings doi. 10.18129/B9.bioc.Biostrings.
  23. Day RN, Davidson MW. 2009. The fluorescent protein palette: tools for cellular imaging. Chem. Soc. Rev. 38: 2887-2921. https://doi.org/10.1039/b901966a
  24. Henkin TM. 2000. Transcription termination control in bacteria. Curr. Opin. Microbiol. 3: 149-153. https://doi.org/10.1016/S1369-5274(00)00067-9
  25. Feng Y, Zhang Y, Ying C, Wang D, Du C. 2015. Nanopore-based fourth-generation DNA sequencing technology. Genomics Proteomics Bioinformatics 13: 4-16. https://doi.org/10.1016/j.gpb.2015.01.009
  26. Fuller CW, Kumar S, Porel M, Chien M, Bibillo A, Stranges PB, et al. 2016. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array. Proc. Natl. Acad. Sci. USA 113: 5233-5238. https://doi.org/10.1073/pnas.1601782113
  27. Hossain A, Lopez E, Halper SM, Cetnar DP, Reis AC, Strickland D, et al. 2020. Automated design of thousands of nonrepetitive parts for engineering stable genetic systems. Nat. Biotechnol. 38: 1466-1475. https://doi.org/10.1038/s41587-020-0584-2
  28. Huynh L, Tagkopoulos I. 2014. Optimal part and module selection for synthetic gene circuit design automation. ACS Synth. Biol. 3: 556-564. https://doi.org/10.1021/sb400139h
  29. Nielsen AAK, Segall-Shapiro TH, Voigt CA. 2013. Advances in genetic circuit design: novel biochemistries, deep part mining, and precision gene expression. Curr. Opin. Chem. Biol. 17: 878-892. https://doi.org/10.1016/j.cbpa.2013.10.003
  30. Nielsen AAK, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, et al. 2016. Genetic circuit design automation. Science 352: aac7341. https://doi.org/10.1126/science.aac7341
  31. Appleton E, Madsen C, Roehner N, Densmore D. 2017. Design automation in synthetic biology. Cold Spring Harbor Perspect. Biol. 9: a023978. https://doi.org/10.1101/cshperspect.a023978
  32. Zhang X, Brainard DH. 2004. Estimation of saturated pixel values in digital color imaging. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 21: 2301-2310. https://doi.org/10.1364/JOSAA.21.002301