DOI QR코드

DOI QR Code

Ultrasonic methods for measuring the cortical bone thickness in bovine tibia in vitro

생체 외 조건의 소 경골에서 초음파를 이용하여 피질골 두께를 측정하기 위한 방법

  • Lee, Kang Il (Department of Physics, Kangwon National University)
  • Received : 2022.07.05
  • Accepted : 2022.08.19
  • Published : 2022.09.30

Abstract

The cortical bone thickness of the tibia is related to fracture risk and overall bone status. The present study aims to investigate the feasibility of two different ultrasonic methods for measuring the cortical bone thickness in bovine tibia in vitro. In the reflection technique, the tibial cortical thickness was determined from ultrasonic reflections from the periosteum and the endosteum producing specific peaks in the signal envelope. In the axial transmission technique, the tibial cortical thickness was determined from ultrasonic guided wave velocities measured along the axial direction of the tibia. The cortical bone thickness determined by using the reflection technique correlated significantly with that measured by using a caliper, with a Pearson's correlation coefficient of r = 0.97 (p < 0.0001). In contrast, the correlation coefficients for the axial transmission technique were r = 0.92 (p < 0.0001) for the first arriving signal method and r = 0.89 (p < 0.0001) for the slow guided wave method. Clinical feasibility should be demonstrated with an in vivo application to address the question whether the ultrasonic methods presented here could be useful as a screening tool for osteoporosis and potentially could be applied to other skeletal sites such as the femur and the radius.

경골의 피질골 두께는 골절 위험 및 전반적인 골 상태와 관련이 있다. 본 연구의 목적은 생체 외 조건의 소경골에서 초음파를 이용하여 피질골 두께를 측정하기 위한 두 가지 다른 방법의 타당성을 조사하는 것이다. 반사법에서 경골의 피질골 두께는 신호 포락선에서 특정 피크를 생성하는 골외막 및 골내막으로부터의 초음파 반사로부터 결정되었다. 축방향 전달법에서 경골의 피질골 두께는 경골의 축방향을 따라 측정된 유도 초음파의 속도로부터 결정되었다. 반사법을 이용하여 측정된 피질골 두께는 캘리퍼스를 이용하여 측정된 피질골 두께와 r = 0.97(p < 0.0001)의 유의미한 피어슨 상관관계수를 나타냈다. 반면, 축방향 전달법을 이용하여 측정된 피질골 두께는 캘리퍼스를 이용하여 측정된 피질골 두께와 최초 도달 신호 방법의 경우에 r = 0.92(p < 0.0001), 느린 유도파 방법의 경우에 r = 0.89(p < 0.0001)의 상관관계수를 나타냈다. 본 연구에서 제시된 초음파 측정법이 골다공증의 스크리닝 도구로서 유용할 수 있고, 잠재적으로 대퇴골 및 요골과 같은 다른 골격 부위에 적용될 수 있는지 여부를 확인하기 위해서는 생체 내 조건에서 임상적 타당성이 입증되어야 한다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1F1A1046161).

References

  1. J. A. Kanis, E. V. McCloskey, H. Johansson, A. Oden, L. J. Melton III, and N. Khaltaev, "A reference standarad for the description of osteoporosis," Bone, 42, 467-475 (2008). https://doi.org/10.1016/j.bone.2007.11.001
  2. P. Laugier, "Instrumentation for in vivo ultrasonic characterization of bone strength," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55, 1179-1196 (2008). https://doi.org/10.1109/TUFFC.2008.782
  3. D. Hans and M. A. Krieg, "The clinical use of quantitative ultrasound (QUS) in the detection and management of osteoporosis," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55, 1529-1538 (2008). https://doi.org/10.1109/TUFFC.2008.829
  4. P. Augat, H. Reeb, and L. E. Claes, "Prediction of fracture load at different skeletal sites by geometric properties of the cortical shell," J. Bone Miner. Res. 11, 1356-1363 (1996). https://doi.org/10.1002/jbmr.5650110921
  5. J. A. Chen, J. Foiret, J. G. Minonzio, M. Talmant, Z. Q. Su, L. Cheng, and P. Laugier, "Measurement of guided mode wavenumbers in soft tissue-bone mimicking phantoms using ultrasonic axial transmission," Phys. Med. Biol. 57, 3025-3037 (2012). https://doi.org/10.1088/0031-9155/57/10/3025
  6. M. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, "A review of tissue substitutes for ultrasound imaging," Ultrasound Med. Biol. 36, 861-873 (2010). https://doi.org/10.1016/j.ultrasmedbio.2010.02.012
  7. S. P. Dodd, J. L. Cunningham, A. W. Miles, S. Gheduzzi, and V. F. Humphrey, "Ultrasonic propagation in cortical bone mimics," Phys. Med. Biol. 51, 4635-4647 (2006). https://doi.org/10.1088/0031-9155/51/18/012
  8. P. H. F. Nicholson, P. Moilanen, T. Karkkainen, J. Timonen, and S. Cheng, "Guided ultrasonic waves in long bones: modelling, experiment and in vivo application," Physiol. Meas. 23, 755-768 (2002). https://doi.org/10.1088/0967-3334/23/4/313
  9. P. Moilanen, "Ultrasonic guided waves in bone," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55, 1277- 1286 (2008). https://doi.org/10.1109/TUFFC.2008.790
  10. H. Lamb, "On waves in an elastic plate," Proc. R. Soc. London A, 93, 114-128 (1917). https://doi.org/10.1098/rspa.1917.0008
  11. K. A. Wear, "Autocorrelation and cepstral methods for measurement of tibial cortical thickness," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 50, 655-660 (2003). https://doi.org/10.1109/TUFFC.2003.1209552
  12. J. Karjalainen, O. Riekkinen, J. Toyras, H. Kroger, and J. Jurvelin, "Ultrasonic assessment of cortical bone thickness in vitro and in vivo," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55, 2191-2197 (2008). https://doi.org/10.1109/TUFFC.918