DOI QR코드

DOI QR Code

Anti-inflammatory Activity of Viscum album var. coloratum In Vitro

한국산 겨우살이의 항염증 효과

  • Hong, Chang-Eui (College of Pharmacy, Sunchon National University) ;
  • Lim, Wantaek (College of Pharmacy, Sunchon National University) ;
  • Lyu, Su-Yun (College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University)
  • 홍창의 (순천대학교 약학과) ;
  • 임완택 (순천대학교 약학과) ;
  • 유수연 (순천대학교 약학과 및 생명약학연구소)
  • Received : 2022.09.07
  • Accepted : 2022.09.25
  • Published : 2022.09.30

Abstract

In this study, we investigated whether Korean mistletoe (Viscum album L. var. coloratum) has anti-inflammatory effects that play key roles in the regulation of pathological mechanism of atopic dermatitis (AD). Four kinds of fractions, hexane (HX), ethyl acetate (EA), butanol (BU), and methylene chloride (MC), were used and RAW264.7 mouse macrophages and RBL-2H3 rat basophils were used to measure various inflammatory markers. EA significantly decreased mRNA expression and protein secretion levels of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, and IL-4 but HX did not affect these markers. In addition, BU decreased mRNA expressions of IL-4 and IL-6 whereas MC decreased IL-6 and TNF-α mRNA expressions. As a result, Korean mistletoe can show anti-inflammatory effects by inhibiting the secretion of cytokines related to AD, so it is thought that it will be possible to develop functional cosmetics related to this.

본 연구에서는 한국산 겨우살이 (Viscum album L. var. coloratum)이 아토피 피부염과 관련된 염증성 사이토카인에 영향을 미치는지 여부를 알아보았다. 실험에는 헥산, 부탄올, 에틸아세테이트, 메틸렌클로라이드, 총 4 가지 분획물을 사용하였으며, RAW264.7 마우스 대식세포와 RBL-2H3 렛트 호중구를 이용하여 염증성 마커를 연구하였다. 실험 결과 에틸아세테이트 분획이 tumor necrosis factor alpha (TNF-α), interleukin(IL)-6, IL-4의 mRNA 발현 및 단백질 분비량을 감소시켰으나, 헥산 분획은 뚜렷한 효능이 없었다. 또한 부탄올 분획은 IL-4, IL-6의 mRNA 발현을 감소시켰고, 메틸렌클로라이드 분획은 IL-4와 TNF-α의 mRNA 발현을 감소시켰다. 결과적으로 한국산 겨우살이(V. album var. coloratum)가 아토피 피부염과 관련된 사이토카인 분비를 억제시켜 항염증 효과를 나타낼 수 있으므로, 이와 관련된 기능성 화장품 개발이 가능할 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 순천대학교 교연비 사업에 의하여 연구되었음.

References

  1. M. Ferencik, V. Stvrtinova, I. Hulin, and M. Novak, Inflammation - a lifelong companion, Folia Microbiol., 52(2), 159 (2007). https://doi.org/10.1007/BF02932155
  2. N. Hogg, Free radicals in disease, Semin. Reprod. Endocrinol., 16(4), 241-8 (1998). https://doi.org/10.1055/s-2007-1016284
  3. S. Toyokuni, The origin and future of oxidative stress pathology: From the recognition of carcinogenesis as an iron addiction with ferroptosis-resistance to non- thermal plasma therapy, Pathol. Int., 66(5), 245-59 (2016). https://doi.org/10.1111/pin.12396
  4. J. N. Sharma, A. Al-Omran, and S. S. Parvathy, Role of nitric oxide in inflammatory diseases, Inflammopharmacology, 15(6), 252 (2007). https://doi.org/10.1007/s10787-007-0013-x
  5. N. Omata, H. Tsukahara, S. Ito, Y. Ohshima, M. Yasutomi, A. Yamada, M. Jiang, M. Hiraoka, M. Nambu, Y. Deguchi, and M. Mayumi, Increased oxidative stress in childhood atopic dermatitis, Life Sci, 69(2), 223 (2001). https://doi.org/10.1016/S0024-3205(01)01124-9
  6. C. Brocker, D. Thompson, A. Matsumoto, D. W. Nebert, and V. Vasiliou, Evolutionary divergence and functions of the human interleukin (IL) gene family, Hum. genomics, 5(1), 30 (2010). https://doi.org/10.1186/1479-7364-5-1-30
  7. D. Vercelli, H. H. Jabara, K. Arai, and R. S. Geha, Induction of human IgE synthesis requires interleukin 4 and T/B cell interactions involving the T cell receptor/CD3 complex and MHC class II antigens, J. Exp. Med., 169(4), 1295 (1989). https://doi.org/10.1084/jem.169.4.1295
  8. G. Del Prete, E. Maggi, P. Parronchi, I. Chretien, A. Tiri, D. Macchia, M. Ricci, J. Banchereau, J. De Vries, and S. Romagnani, IL-4 is an essential factor for the IgE synthesis induced in vitro by human T cell clones and their supernatants, J. Immunol., 140(12), 4193 (1988). https://doi.org/10.4049/jimmunol.140.12.4193
  9. T. Hirano, K. Yasukawa, H. Harada, T. Taga, Y. Watanabe, T. Matsuda, S. Kashiwamura, K. Nakajima, K. Koyama, A. Iwamatsu, and et al., Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin, Nature, 324 (6092), 73 (1986). https://doi.org/10.1038/324073a0
  10. M. Tang, A. Kemp, and G. Varigos, IL-4 and interferon-gamma production in children with atopic disease, Clin. Exp. Immunol., 92(1), 120 (1993). https://doi.org/10.1111/j.1365-2249.1993.tb05957.x
  11. A. Tsianakas and T. A. Luger, The anti-IL-4 receptor alpha antibody dupilumab: facing a new era in treating atopic dermatitis, Expert Opin. BIol. Ther., 15(11), 1657 (2015). https://doi.org/10.1517/14712598.2015.1095887
  12. T. Ilves and I. T. Harvima, Decrease in chymase activity is associated with increase in IL-6 expression in mast cells in atopic dermatitis, Acta derm. Venereol., 95(4), 411 (2015). https://doi.org/10.2340/00015555-1979
  13. W. Hu, X. Yang, C. Zhe, Q. Zhang, L. Sun, and K. Cao, Puerarin inhibits iNOS, COX-2 and CRP expression via suppression of NF-κB activation in LPS-induced RAW264.7 macrophage cells, Pharmacol. Rep., 63(3), 781 (2011). https://doi.org/10.1016/s1734-1140(11)70590-4
  14. S. Wang, L. Liu, Y. Fan, A. M. El-Toni, M. S. Alhoshan, D. li, and F. Zhang, In vivo High-resolution ratiometric fluorescence imaging of inflammation using NIR-II nanoprobes with 1550 nm emission, Nano Lett., 19(4), 2418 (2019). https://doi.org/10.1021/acs.nanolett.8b05148
  15. D. Y. Leung, Atopic dermatitis: new insights and opportunities for therapeutic intervention, J. Allergy Clin. Immunol., 105(5), 860 (2000). https://doi.org/10.1067/mai.2000.106484
  16. T. A. Khwaja, C. B. Dias, and S. Pentecost, Recent studies on the anticancer activities of mistletoe (Viscum album) and its alkaloids, Oncology, 43 Suppl 1, 42 (1986). https://doi.org/10.1159/000226419
  17. A. Bussing, K. Suzart, J. Bergmann, U. Pfuller, M. Schietzel, and K. Schweizer, Induction of apoptosis in human lymphocytes treated with Viscum album L. is mediated by the mistletoe lectins, Cancer lett., 99(1), 59 (1996). https://doi.org/10.1016/0304-3835(95)04038-2
  18. S. Y. Lyu, S. H. Choi, and W. B. Park, Korean mistletoe lectin-induced apoptosis in hepatocarcinoma cells is associated with inhibition of telomerase via mitochondrial controlled pathway independent of p53, Arch. Pharm. Res., 25(1), 93 (2002). https://doi.org/10.1007/BF02975269
  19. T. J. Yoon, Y. C. Yoo, T. B. Kang, S. K. Song, K. B. Lee, E. Her, K. S. Song, and J. B. Kim, Antitumor activity of the Korean mistletoe lectin is attributed to activation of macrophages and NK cells, Arch. Pharm. Res., 26(10), 861 (2003). https://doi.org/10.1007/BF02980033
  20. C. H. Lee, J. K. Kim, H. Y. Kim, S. M. Park, and S. M. Lee, Immunomodulating effects of Korean mistletoe lectin in vitro and in vivo, Int. immunopharmacol., 9(13-14), 1555 (2009). https://doi.org/10.1016/j.intimp.2009.09.011
  21. K. J. Yun, J. Y. Kim, J. B. Kim, K. W. Lee, S. Y. Jeong, H. J. Park, H. J. Jung, Y. W. Cho, K. Yun, and K. T. Lee, Inhibition of LPS-induced NO and PGE2 production by asiatic acid via NF-kappa B inactivation in RAW 264.7 macrophages: possible involvement of the IKK and MAPK pathways, Int. immunopharmacol., 8(3), 431 (2008). https://doi.org/10.1016/j.intimp.2007.11.003
  22. J. J. Zimmerman, Redox/radical repertoire rapport: pathophysiology and therapeutics, Acta Anaesthesiol. Scand., 42(1), 1 (1998). https://doi.org/10.1111/j.1399-6576.1998.tb05072.x
  23. S. Toyokuni, Reactive oxygen species-induced molecular damage and its application in pathology, Pathol. Int., 49(2), 91 (1999). https://doi.org/10.1046/j.1440-1827.1999.00829.x
  24. M. M. Tollefson and A. L. Bruckner, Atopic dermatitis: skin-directed management, Pediatrics, 134(6), e1735 (2014). https://doi.org/10.1542/peds.2014-2812
  25. N. S. Al-Waili, Topical application of natural honey, beeswax and olive oil mixture for atopic dermatitis or psoriasis: partially controlled, single-blinded study, Complement. THer. Med., 11(4), 226 (2003). https://doi.org/10.1016/S0965-2299(03)00120-1
  26. J. Graf, Herbal anti-inflammatory agents for skin disease, Skin ther. lett., 5(4), 3 (2000).
  27. R. Zamora, Y. Vodovotz, and T. R. Billiar, Inducible nitric oxide synthase and inflammatory diseases, Mol. Med., 6(5), 347 (2000). https://doi.org/10.1007/bf03401781
  28. N. G. Baydar, G. Ozkan, and O. Sagdic, Total phenolic contents and antibacterial activities of grape (Vitis vinifera L.) extracts, Food Control, 15(5), 335 (2004). https://doi.org/10.1016/S0956-7135(03)00083-5
  29. M. K. O'Banion, Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology, Crit. Rev. Neurobiol., 13(1), 45 (1999). https://doi.org/10.1615/critrevneurobiol.v13.i1.30
  30. A. J. Wiemer, S. Hegde, J. E. Gumperz, and A. Huttenlocher, A live imaging cell motility screen identifies prostaglandin E2 as a T cell stop signal antagonist, J. Immun., 187(7), 3663 (2011). https://doi.org/10.4049/jimmunol.1100103
  31. P. J. Delves and I. M. Roitt, The immune system. First of two parts, N. Eng l. J. Med., 343(1), 37 (2000). https://doi.org/10.1056/NEJM200007063430107
  32. N. Favre, G. Bordmann, and W. Rudin, Comparison of cytokine measurements using ELISA, ELISPOT and semi-quantitative RT-PCR, J. Immunol. Methods, 204(1), 57 (1997). https://doi.org/10.1016/S0022-1759(97)00033-1
  33. L. E. Pascal, L. D. True, D. S. Campbell, E. W. Deutsch, M. Risk, I. M. Coleman, L. J. Eichner, P. S. Nelson, and A. Y. Liu, Correlation of mRNA and protein levels: cell type-specific gene expression of cluster designation antigens in the prostate, BMC genom., 9, 246 (2008). https://doi.org/10.1186/1471-2164-9-246
  34. Y. Guo, P. Xiao, S. Lei, F. Deng, G. G. Xiao, Y. Liu, X. Chen, L. Li, S. Wu, Y. Chen, H. Jiang, L. Tan, J. Xie, X. Zhu, S. Liang, and H. Deng, How is mRNA expression predictive for protein expression? A correlation study on human circulating monocytes, Acta Biochim. Biophys. Sin., 40(5), 426 (2008). https://doi.org/10.1111/j.1745-7270.2008.00418.x