DOI QR코드

DOI QR Code

A Study for Antimicrobial Susceptibility of Wetlands to Eliminate Toilet Bacteria

  • LEE, Woo-Sik (Department of Chemical & Biological Engineering, Gachon University) ;
  • KWON, Woo-Taeg (Department of Environmental health and Safety, Eulji University)
  • Received : 2022.09.14
  • Accepted : 2022.09.30
  • Published : 2022.09.30

Abstract

Purpose: The purpose of this study is to investigate whether wetland has antimicrobial activity on pathogenic bacteria in the toilet bowl. Research design, data and methodology: Air-dried mud obtained from "Jilmoe Bog" wetland was packed and dissolved in the autoclaved saline. Antimicrobial susceptibility was assessed against three Gram-negative bacteria using disk diffusion method and broth dilution method. Identification of specific bacterium presented in wetland supernatant was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Results: Incubation of three Gram-negative bacteria with wetland supernatant inhibited bacterial growth of the bacteria, otherwise increased prevalence of specific bacterium. It was confirmed that Pseudomonas putida was presented in wetland supernatant. Conclusions: The results presented in this study might provide the possibility to utilize wetland supernatant as a bioremediation of toilet bowl bacteria.

Keywords

References

  1. Abney, S. E., Bright, K. R., Mckinney, J., Ijaz, M. K. & Gerba, C. P. 2021. Toilet hygiene-review and research needs. J. Appl. Microbiol., 131, 2705-2714. https://doi.org/10.1111/jam.15121
  2. Azubuike, C. C., Chikere, C. B. & Okpokwasili, G. C. 2016. Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol., 32, 180. https://doi.org/10.1007/s11274-016-2137-x
  3. Babich, O., Shevchenko, M., Ivanova, S., Pavsky, V., Zimina, M., Noskova, S., Anohova, V., Chupakhin, E. & Sukhikh, S. 2021. Antimicrobial potential of microorganisms isolated from the bottom sediments of Lake Baikal. Antibiotics (Basel), 10.
  4. Barker, J. & Jones, M. V. 2005. The potential spread of infection caused by aerosol contamination of surfaces after flushing a domestic toilet. J. Appl. Microbiol., 99, 339-47. doi: 10.1111/j.1365-2672.2005.02610.x
  5. Bello, A., Quinn, M. M., Perry, M. J. & Milton, D. K. 2009. Characterization of occupational exposures to cleaning products used for common cleaning tasks-a pilot study of hospital cleaners. Environmental Health, 8, 11. doi: 10.1186/1476-069X-8-11
  6. Bodelier, P. L. & Dedysh, S. N. 2013. Microbiology of wetlands. Front. Microbiol., 4, 79. https://doi.org/10.3389/fmicb.2013.00079
  7. Cavalini, L., Jankoski, P., Correa, A. P. F., Brandelli, A. & Motta, A. S. D. 2021. Characterization of the antimicrobial activity produced by Bacillus sp. isolated from wetland sediment. An Acad. Bras. Cienc., 93, e20201820. https://doi.org/10.1590/0001-3765202120201820
  8. Church, D. L., Cerutti, L., Gurtler, A., Griener, T., Zelazny, A. & Emler, S. 2020. Performance and application of 16S rRNA gene cycle sequencing for routine identification of bacteria in the clinical microbiology laboratory. Clin. Microbiol. Rev., 33.
  9. Ferousi, C., Lindhoud, S., Baymann, F., Kartal, B., Jetten, M. S. & Reimann, J. 2017. Iron assimilation and utilization in anaerobic ammonium oxidizing bacteria. Curr. Opin. Chem. Biol., 37, 129-136. doi: 10.1016/j.cbpa.2017.03.009
  10. Gerba, C. P., Wallis, C. & Melnick, J. L. 1975. Microbiological hazards of household toilets: Droplet production and the fate of residual organisms. Appl. Microbiol., 30, 229-37. https://doi.org/10.1128/am.30.2.229-237.1975
  11. Graef, C., Hestnes, A. G., Svenning, M. M. & Frenzel, P. 2011. The active methanotrophic community in a wetland from the High Arctic. Environ. Microbiol. Rep., 3, 466-72. https://doi.org/10.1111/j.1758-2229.2010.00237.x
  12. Ivankovic, T. & Hrenovic, J. 2010. Surfactants in the environment. Arh. Hig. Rada. Toksikol., 61, 95-110. https://doi.org/10.2478/10004-1254-61-2010-1943
  13. Johnson, D. L., Lynch, R. A., Villanella, S. M., Jones, J. F., Fang, H., Mead, K. R. & Hirst, D. V. L. 2017. Persistence of bowl water contamination during sequential flushes of contaminated toilets. J. Environ. Health, 80, 34-49.
  14. Marinho, P. R., Moreira, A. P. B., Pellegrino, F. L. P. C., Muricy, G., Bastos, M. D. C. D. F., Santos, K. R. N. D., ... & Laport, M. S. (2009). Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria. Memorias do Instituto Oswaldo Cruz, 104, 678-682. https://doi.org/10.1590/S0074-02762009000500002
  15. Garcia, M. M., & de Llasera, M. P. G. (2021). A review on the enzymes and metabolites identified by mass spectrometry from bacteria and microalgae involved in the degradation of high molecular weight PAHs. Science of The Total Environment, 797, 149035. https://doi.org/10.1016/j.scitotenv.2021.149035
  16. Aguilar, J. R. P., Cabriales, J. J. P., & Vega, M. M. (2008). Identification and characterization of sulfur-oxidizing bacteria in an artificial wetland that treats wastewater from a tannery. International Journal of Phytoremediation, 10(5), 359-370. doi: 10.1080/15226510802100390
  17. Peter, S., Oberhettinger, P., Schuele, L., Dinkelacker, A., Vogel, W., Dorfel, D., ... & Willmann, M. (2017). Genomic characterisation of clinical and environmental Pseudomonas putida group strains and determination of their role in the transfer of antimicrobial resistance genes to Pseudomonas aeruginosa. BMC genomics, 18(1), 1-11.. https://doi.org/10.1186/s12864-016-3406-7
  18. Pipite, A., Siro, G., Subramani, R. & Srinivasan, S. 2022. Microbiological analysis, antimicrobial activity, heavy-metals content and physico-chemical properties of Fijian mud pool samples. Sci. Total Environ., 854, 158725.
  19. Pozdnyakova-filatova, I., Petrikov, K., Vetrova, A., Frolova, A., Streletskii, R. & Zakharova, M. 2020. The naphthalene catabolic genes of Pseudomonas putida BS3701: Additional regulatory control. Front. Microbiol., 11, 1217. https://doi.org/10.3389/fmicb.2020.01217
  20. Temmink, R. J. M., Lamers, L. P. M., Angelini, C., Bouma, T. J., Fritz, C., Van de koppel, J., Lexmond, R., Rietkerk, M., Silliman, B. R., Joosten, H. & Van der heide, T. 2022. Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots. Science, 376, eabn1479. https://doi.org/10.1126/science.abn1479
  21. Wang, W., Zhang, Y., Li, M., Wei, X., Wang, Y., Liu, L., Wang, H. & Shen, S. 2020. Operation mechanism of constructed wetland-microbial fuel cells for wastewater treatment and electricity generation: A review. Bioresour. Technol., 314, 123808. https://doi.org/10.1016/j.biortech.2020.123808
  22. Xiang, Y., Wang, S., Li, J., Wei, Y., Zhang, Q., Lin, L. & Ji, X. 2018. Isolation and characterization of two lytic cold-active bacteriophages infecting Pseudomonas fluorescens from the Napahai plateau wetland. Can. J. Microbiol., 64, 183-190. doi: 10.1139/cjm-2017-0572