CF4/O2/Ar Plasma Resistance of Al2O3 Free Multi-components Glasses

Al2O3 Free 다성분계 유리의 CF4/O2/Ar 내플라즈마 특성

  • Min, Kyung Won (Korea Institute of Ceramic Engineering and Technology) ;
  • Choi, Jae Ho (Korea Institute of Ceramic Engineering and Technology) ;
  • Jung, YoonSung (Korea Institute of Ceramic Engineering and Technology) ;
  • Im, Won Bin (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Hyeong-Jun (Korea Institute of Ceramic Engineering and Technology)
  • Received : 2022.09.01
  • Accepted : 2022.09.19
  • Published : 2022.09.30

Abstract

The plasma resistance of multi-component glasses containing La, Gd, Ti, Zn, Y, Zr, Nb, and Ta was analyzed in this study. The plasma etching was performed via inductively coupled plasma-reactive ion etching (ICP-RIE) using CF4/O2/Ar mixed gas. After the reaction, the glass with a low fluoride sublimation temperature and high content of P, Si, and Ti elements showed a high etching rate. On the other hand, the glass containing a high fluoride sublimation temperature component such as Ca, La, Gd, Y, and Zr exhibited high plasma resistance because the etch rate was lower than that of sapphire. Glass with low plasma resistance increased surface roughness after etching or nanoholes were formed on the surface, but glass with high plasma resistance showed little change in surface microstructure. Thus, the results of this study demonstrate the potential for the development of plasma-resistant glasses (PRGs) with other compositions besides alumino-silicate glasses, which are conventionally referred to as plasma-resistant glasses.

Keywords

Acknowledgement

이 논문은 한국연구재단(NRF)[NRF-2020M3H4A3106001]으로부터 지원을 받아 연구되었습니다.

References

  1. H. Shih, A Systematic Study and Characterization of Advanced Corrosion Resistance Materials and Their Applications for Plasma Etching Processes in Semiconductor Silicon Wafer Fabrication, Corrosion Resistance. 1 (2012). https://doi.org/10.5772/31992.
  2. H. Radamson, L. Thylen, Monolithic Nanoscale Photonics-Electronics Intergation in Silicon and Other Group IV Elements, Elsevier Science, Netherlands, 2014, pp. 128.
  3. T-K. Lin, W-K. Wang, S-Y. Huang, C-T. Tasi, D-S. Wuu, Comparison of Erosion Behavior and Particle Contamination in Mass-Production CF4/O2 Plasma Chambers Using Y2O3 and YF3 Protective Coatings, Nanomaterials. 7 (2017) 183. https://doi.org/10.3390/nano7070183.
  4. N. ITO, T. Moriya, F. Uesugi, M. Matsumoto, S. Liu, Y. Kitayama, Reduction of particle contamination in plasma-etching equipment by dehydration of chamber wall, Jpn J Appl Phys. 47 (2008) 5R. https://doi.org/10.1143/JJAP.47.3630.
  5. S. J. Fonash, An Overview of Dry Etching Damage and Contamination Effects, J. Electrochem. Soc. 137 (1990) 12. https://doi.org/10.1149/1.2086322.
  6. K. Miwa, T. Sawai, M. Aoyama, F. Inoue, A. Oikawa, and K. Imaoka, Particle Reduction using Y2O3 Material in an Etching Tool, IEEE Int. Symp. Semicond. Manuf. Confer. Proc., San Jose, CA, (2005) 479-482.
  7. D.M. Kim, Y.S. Oh, S.W. Kim, H.T. Kim, D.S. Lim, S.M. Lee, The erosion behaviors of Y2O3 and YF3 coatings under fluorocarbon plasma, Thin Solid Films 519 (2011) 6698-6702. https://doi.org/10.1016/j.tsf.2011.04.049.
  8. Y.C. Cao, L. Zhao, J. Luo, K. Wang, B.P. Zhang, H. Yokota, Y. Ito, J.F. Li, Plasma etching behavior of Y2O3 ceramics: Comparative study with Al2O3, Appl. Surf. Sci. 366 (2016) 304-309. https://doi.org/10.1016/j.apsusc.2016.01.092.
  9. C.S. Kim, M.J. Kim, H. Cho, T.E. Park, Y.H. Yun, Fabrication and plasma resistance of Y2O3 ceramics, Ceram. Int. 41 (2015) 12757-12762. https://doi.org/10.1016/j.ceramint.2015.06.109.
  10. R. Ramos, G. Cunge, B. Pelissier, O. Joubert, Cleaning aluminum fluoride coatings from plasma reactor walls in SiCl4/Cl2 plasmas, Plasma Sources Sci. Technol. 16 (2007) 711-715. https://doi.org/10.1088/0963-0252/16/4/004.
  11. J.S. Reed, Principles of Ceramics Processing, John Wiley & Sons Inc, New York, 1995, pp. 35-50.
  12. J. Iwasawa, R. Nishimizu, M. Tokita, M. Kiyohara, Plasma-Resistant Dense Yttrium Oxide Film Prepared by Aerosol Deposition Process, J. Am. Ceram. Soc. 90 (2007) 2327-2332. https://doi.org/10.1111/j.1551-2916.2007.01738.
  13. D. M. Kim, K. B. Kim, S. Y. Yoon, Y. S. Oh, H. T. Kim, S.M. Lee, Effects of artificial pores and purity on the erosion behaviors of polycrystalline Al2O3 ceramics under fluorine plasma, J. Ceram. Soc. Jpn. 117 (2009) 863-867. https://doi.org/10.2109/jcersj2.117.863.
  14. J. Kitamura, H. Mizuno, N. Kato, I. Aoki, Plasma-Erosion Properties of Ceramic Coating Prepared by Plasma Spraying, Mater. Trans. 47 (2006) 1677-1683. https://doi.org/10.2320/matertrans.47.1677.
  15. J.H. Choi, H. Na, J. Park, H.J. Kim, Plasma corrosion resistance of aluminosilicate glasses containing Ca, Y and B under fluorocarbon plasma with Ar+, Journal of Non-Crystalline Solids. 521 (2019) 119498. https://doi.org/10.1016/j.corsci.2018.10.015.
  16. J. H. Choi, H. B. Park, H. Na, H. J. Kim, Plasma corrosion resistance of RO-Al2O3-SiO2 (R: Alkaline earth) under fluorocarbon plasma with Ar+: II. Plasma resistant glass, Corrosion Science. 146 (2019) 247-253. https://doi.org/10.1016/j.jnoncrysol.2019.119498.
  17. H. Na, J. Park, S.C. Choi, H.J. Kim, The effect of composition of plasma resistance of CaO-Al2O3-SiO2 glasses under Fluorocarbon Plasma with Ar+, Applied Surface Science. 476 (2019) 663-667. https://doi.org/10.1016/j.apsusc.2019.01.133.
  18. J.H. Choi, Y.S. Han, S.M. Lee, H.B. Park, S.C. Choi, H.J. Kim, Characteristics of Carbon Tetrafluoride Plasma Resistance of Various Glasses, J. Korean Ceram. Soc. 53 (2016) 700-706. http://dx.doi.org/10.4191/kcers.2016.53.6.700
  19. Y.S. Jung, K.W. Min, J.H. Choi, J.S. Yoon, W.B. Im, H.J. Kim, Plasma-resistant characteristics according to sintering conditions of CaO-Al2O3-SiO2 glass coating layer, J. Korean Ceram. Soc. 59 (2022) 86-93. https://doi.org/10.1007/s43207-021-00149-x
  20. J.H. Choi, J.S. Yoon, Y.S. Jung, K.W. Min, W.B. Im, H.J. Kim, Analysis of plasma etching resistance for commercial quartz glasses used in semiconductor apparatus in fluorocarbon plasma, Materials Chemistry and Physics. 272 (2021) 0254-0584. https://doi.org/10.1016/j.matchemphys.2021.125015
  21. W.M. Haynes, D.R. Lide, T.J. Bruno, CRC Handbook of Chemistry and Physics, CRC Press, United States, 2016, pp. 746, 749, 751, 774, 776, 778, 784, 786, 790, 797, 798.
  22. Y.C. Kim, J. Oishi, S.H. Kang, The enthalpies of formation of gadolinium and ytterbium trifluorides, The Journal of Chemical Thermodynamics. 10 (1978) 975-981. https://doi.org/10.1016/0021-9614(78)90059-9
  23. D.M. Kim, S.H. Lee, W.B. Alexander, K.B. Kim, Y.S. Oh, S.M. Lee, X-Ray Photoelectron Spectroscopy Study on the Interaction of Yttrium-Aluminum Oxide with Fluorine-Based Plasma, J. Am. Ceram. Soc. 94 (2011) 3455-3459. https://doi.org/10.1111/j.1551-2916.2011.04589.x
  24. S.A. Utlak, T.M. Besmann, Thermodynamic assessment of the Na2O-Al2O3-SiO2-B2O3 pseudo-binary and - ternary systems, The Journal of Chemical Thermodynamics. 130 (2019) 251-268. https://doi.org/10.1016/j.jct.2018.09.001
  25. M.R. Ackerson, G.D. Cody, B.O. Mysen, Si solid state NMR and Ti K-edge XAFS pre-edge spectroscopy reveal complex behavior of Ti in silicate melts, Progress in Earth and Planetary Science, 7:14 (2020) https://doi.org/10.1186/s40645-020-00326-2