DOI QR코드

DOI QR Code

Machine Learning Approach for Prediction of VOD Usage

머신러닝을 활용한 VOD 이용건수 예측

  • 전종석 (한동대학교 ICT창업학부) ;
  • 장하은 (한동대학교 커뮤니케이션학부) ;
  • 오주희 (한동대학교 경영경제학부)
  • Received : 2022.07.11
  • Accepted : 2022.09.09
  • Published : 2022.09.30

Abstract

This study developed a model for predicting the number of VOD uses of IPTV, an online market in the film industry. A machine learning-based prediction model was established using the VOD usage data collected by the Korean Film Council from 2017 to 2021. Through literature research and cluster analysis, the difference between the offline market and the online market is revealed, and a new category of VOD usage is proposed. The purpose is to help IPTV companies establish marketing strategies as well as support decision-making by developing a machine learning-based VOD usage prediction model.

본 연구는 영화 산업에서 온라인 시장인 IPTV의 VOD 이용 건수 예측 모델을 개발하였다. 한국영화진흥위원회에서 수집한 2017년부터 2021년까지 VOD 이용건수 데이터를 활용하여 머신러닝 기반 예측모델을 구축했다. 문헌조사와 군집분석을 통하여 오프라인 시장과 온라인 시장의 차이를 밝히고, VOD 이용 건수의 새로운 범주를 제안한다. 머신러닝 기반의 VOD 이용 건수 예측 모델 개발을 통해 IPTV 기업들의 의사결정 지원 뿐 아니라 마케팅 전략 수립을 돕는 것을 목적으로 한다.

Keywords

Acknowledgement

본 연구는 2022년도 한동대학교 ICT기업가 정신센터 대학혁신지원사업의 지원을 받아 수행하였음.

References

  1. KOFIC, 2021 Korea Film Industry Settlement Report
  2. Lee, S. H. "A Study on the Cultural and Creative Industry in the COVID-19 Era.", The Journal of the Convergence on Culture Technology (JCCT), 6(4), 567-573, 2020. DOI : 10.17703/JCCT.2020.6.4.567
  3. Jeon, S., & Son,Y. S. "Prediction of box office using data mining", The Korean Journal of Applied Statistics, 29(7), 1257-1270, 2016. DOI : 10.5351/KJAS.2016.29.7.1257
  4. Choi, Y. Predicting VOD Success of Motion Pictures in Pay-TV, 2018. (Doctoraldissertation, Seoul Graduate School).
  5. Lee, G. W., & Bang, M. Y. "A study on Innovation Methods for the Content Industry in the postOVID-19 Era", International Journal of Advanced Culture Technology, 9(3), 142-151, 2021. DOI : 10.17703/IJACT.2021.9.3.142
  6. Bury, R., &Li, J. "Is it live or is it timeshifted, streamed or downloaded?Watching television in the era of multiple screens", New media & society, 17(4), 592-610, 2015. DOI : 10.1177/1461444813508368
  7. Lotz, A. D. "What is US television now?", The annals of the American academy of political and social science, 625(1), 49-59, 2009. DOI : 0.1177/0002716209338366 https://doi.org/10.1177/0002716209338366
  8. Subramanya, S.R., & Yi, B. K. "Utility model for on-demand digital content", IEEE Computer, 38(6), 95&98, 2005. DOI : 10.1109/mc.2005.206
  9. Kim, S. H., & Lim, S. H. "Study on Status of VOD Viewer Ratings and Improvement of Measurement", Advertising Studies, 26(2), 139- 61, 2015. DOI : 10.14377/kja.2015.2.28.139
  10. Yuan, Y., & Wang, C. "IPTV video quality assessment model based on neural network", Journal of Visual Communication and Image Representation, 64, 102629, 2019. DOI : 10.1016/j.jvcir.2019.102629
  11. Kim, H. M. Understanding digital video platforms. CommunicationBooks, 2015.
  12. Yoo, J.H.,2014, May 30. The power of home video VOD... Frozen scores 600 million household sales in a day, The Korea Economic Daily. Retrieved from, ttp://www.hankyung.com/news/app/newsview.php?aid=2014052999831. Accessed March 30, 2015, March 30. (In Korean)
  13. NasMedia Digital Broadcasting Report, 2014. Increase of film VOD on TV platforms and cases of IPTV film advertisement. Retrieved from, http://www.ad.co.kr/lit/report/show.do?ukey=90034&oid=@392014%7C8%7C1(In Korean)
  14. Kim, E., & Kim, S. "Online movie success in sequential markets: Determinants of video-ondemand film success in Korea", Telematics and Informatics, 34(7),987-995, 2017. DOI : 10.1016/j.tele.2017.04.009
  15. Ministry of Science and ICT(2021. 11. 10.). Number of pay-TV subscribers and market share in the first half of 2021
  16. 「Broadcasting Industry Survey Report for 2021」, Korea Communications Commission Broadcasting Statistics Portal, 2021, p. 17
  17. The Economist, 2021.11.14., "OTT is growing... Why doesn't pay TV codecutting happen in Korea?" https://economist.co.kr/2021/11/14/it/general/20211114120605187
  18. Asian Economy, 2021.9.6., I don't watch pay TV. Concerned about CodeNever... IPTV that follows OTT, https://www.asiae.co.kr/article/2021090520493049460
  19. Remarks from a discussion at the Digital Media Law Scheme Forum, 2021.5.6.
  20. Kim, J. W. "A study on the use of Big Data in Film Industry - Focused on Netflix Analytical Tools", The Korean Journal of Arts Studies, (25), 51-64, 2019. DOI : 10.20976/kjas.2019..25.003
  21. Song, J. W. & S. J. Han, "Predicting gross box office revenue for domestic films", Communications for Statistical Applications and Methods, Vol.20, 301-309, 2013. DOI : 10.5351/csam.2013.20.4.301
  22. Chang, J. Y., "An Experimental Evaluation of Box office Revenue Prediction through Social Big data Analysis and Machine Learning", The journal of the institute of Internet, broadcasting and communication, Vol.17, No.3, 167-173, 2017. DOI : 10.7236/JIIBC.2017.17.3.167
  23. Jeon, S. H., and Y, S, Son, "Prediction of boxoffice using data mining", The Korea Journal of Applied Statistics, Vol.29, No.7, 1257-1270, 2016. DOI : 10.5351/KJAS.2016.29.7.1257
  24. Simon, H. A. 1969. The sciences of the artificial intelligence, 1981. MIT Press.[aHH], 1990. Invariants of human behavior. Annual Review of Psychology, 41, 119.
  25. Liu, H., Hussain, F., Tan, C. L., & Dash, M. "Discretization: An Enabling Technique", Data Mining and Knowledge Discovery. 6: 4, 393-423, 2002. https://doi.org/10.1023/A:1016304305535
  26. Dougherty, J., Kohavi, R., & Sahami, M. "Supervised and unsupervised discretization of continuous features", In Machine learning proceedings, p. 194-202, 1995. Morgan Kaufmann. DOI : 10.1016/b978-1-55860-377-6.50032-3
  27. Yim, J., & Hwang, B. Y. "Predicting movie success based on machine learning using twitter", KIPS transactions on Software and Data Engineering, 3(7), 263-270, 2014. DOI : 10.3745/ktsde.2014.3.7.263
  28. Kim, Y. H., & Hong, J. H. "A study for the development of motion picture box-office prediction model. Communications for statistical applications and methods", 18(6), 859-869, 2011. DOI : 10.5351/ckss.2011.18.6.859
  29. Lee, G. J., & Jang, U. J. Predicting Financial Success of a Movie Using Bayesian Choice Model. In Proceedings of the Korean Operations and Management Science Society Conference(pp. 1851-1856). The Korean Operations Research and Management Science Society, 2006.
  30. Jenks, G. F. The data model concept in statistical mapping. International yearbook of cartography, 7, 186-190, 1967.
  31. McMaster, R. "In memoriam: George f. jenks (1916-1996). Cartography and Geographic Information Systems", 24(1), 56-59, 1997. DOI : 10.1559/152304097782438764
  32. Bayaga, Anass. "Multinomial Logistic Regression: Usage and Application in Risk Analysis", Journal of applied quantitative methods 5(2), 2010.
  33. Biau, Grard, and Erwan Scornet. "A random forest guided tour", Test 25(2) 197-227, 2016. https://doi.org/10.1007/s11749-016-0481-7
  34. Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system." Proceedings of the 22nd ACM sigkdd international conference on knowledge discovery and data mining. 2016. DOI : 10.1145/2939672.2939785
  35. Noble, William S. "What is a support vector machine?", Nature biotechnology, 24(12), 1565-1567, 2006. https://doi.org/10.1038/nbt1206-1565