과제정보
This work was supported by Daftar Isian Pelaksanaan Anggaran (DIPA) Badan Layanan Umum (BLU) University of Lampung through fundamental research grant No. 1604/UN26.21/PN/2021. We thanks to Faculty of Agriculture, University of Lampung for permitting us using research facilities during this study.
참고문헌
- Adeolu, M., Alnajar, S., Naushad, S. and Gupta, R. S. 2016. Genome-based phylogeny and taxonomy of the 'Enterobacteriales': proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int. J. Syst. Evol. Microbiol. 66:5575-5599. https://doi.org/10.1099/ijsem.0.001485
- Ahmad, F., Fouad, H., Liang, S.-Y., Hu, Y. and Mo, J.-C. 2021. Termites and Chinese agricultural system: applications and advances in integrated termite management and chemical control. Insect Sci. 28:2-20. https://doi.org/10.1111/1744-7917.12726
- Ahmed, I., Yokota, A., Yamazoe, A. and Fujiwara, T. 2007. Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int. J. Syst. Evol. Microbiol. 57:1117-1125. https://doi.org/10.1099/ijs.0.63867-0
- Antonopoulos, D. F., Tjamos, S. E., Antoniou, P. P., Rafeletos, P. and Tjamos, E. C. 2008. Effect of Paenibacillus alvei, strain K165, on the germination of Verticillium dahliae microsclerotia in planta. Biol. Control 46:166-170. https://doi.org/10.1016/j.biocontrol.2008.05.003
- Atanasova-Pancevska, N. and Kungulovski, D. 2018. In vitro potential of Paenibacillus alvei DZ-3 as a biocontrol agent against several phytopathogenic fungi. Biologija 64:65-72.
- Berasategui, A., Shukla, S., Salem, H. and Kaltenpoth, M. 2016. Potential applications of insect symbionts in biotechnology. Appl. Microbiol. Biotechnol. 100:1567-1577. https://doi.org/10.1007/s00253-015-7186-9
- Brune, A. 2013. Symbiotic associations between termites and prokaryotes. In: The prokaryotes: prokaryotic biology and symbiotic associations, eds. by E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt and F. Thompson, pp. 545-577. Springer-Verlag, Berlin, Germany.
- Butera, G., Ferraro, C., Alonzo, G., Colazza, S. and Quatrini, P. 2016. The gut microbiota of the wood-feeding termite Reticulitermes lucifugus (Isoptera; Rhinotermitidae). Ann. Microbiol. 66:253-260. https://doi.org/10.1007/s13213-015-1101-6
- Cardoso, J. E. and Echandi, E. 1987. Biological control of Rhizoctonia root rot of snap bean with binucleate Rhizoctonialike fungi. Plant Dis. 71:167-170. https://doi.org/10.1094/PD-71-0167
- Cardoza, Y. J., Klepzig, K. D. and Raffa, K. F. 2006. Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi. Ecol. Entomol. 31:636-645. https://doi.org/10.1111/j.1365-2311.2006.00829.x
- Charkowski, A. O. 2018. The changing face of bacterial soft-rot diseases. Annu. Rev. Phytopathol. 56:269-288. https://doi.org/10.1146/annurev-phyto-080417-045906
- Cohen, I., Ron, I. G. and Ben-Jacob, E. 2000. From branching to nebula patterning during colonial development of the Paenibacillus alvei bacteria. Physica A: Stat. Mech. Appl. 286:321-336. https://doi.org/10.1016/S0378-4371(00)00335-6
- De Vos, P., Garrity, G. M., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., Schleifer, K.-H. and Whitman, W. B. 2009. Bergey's manual of systematic bacteriology. Vol. 3. The firmicutes. 2nd ed. Springer, New York, NY, USA. 1450 pp.
- Evans, T. A., Forschler, B. T. and Grace, J. K. 2013. Biology of invasive termites: a worldwide review. Annu. Rev. Entomol. 58:455-474. https://doi.org/10.1146/annurev-ento-120811-153554
- Gurung, K., Wertheim, B. and Salles, J. F. 2019. The microbiome of pest insects: it is not just bacteria. Entomol. Exp. Appl. 167:156-170. https://doi.org/10.1111/eea.12768
- Gkizi, D., Gonzalez Gil, A., Pardal, A. J., Piquerez, S., Sergaki, C., Ntoukakis, V. and Tjamos, S. E. 2021. The bacterial biocontrol agent Paenibacillus alvei K165 confers inherited resistance to Verticillium dahliae. J. Exp. Bot. 72:4565-4576. https://doi.org/10.1093/jxb/erab154
- Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95-98.
- Hugh, R. and Leifson, E. 1953. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J. Bacteriol. 66:24-26. https://doi.org/10.1128/jb.66.1.24-26.1953
- Husseneder, C. 2010. Symbiosis in subterranean termites: a review of insights from molecular studies. Environ. Entomol. 39:378-388. https://doi.org/10.1603/EN09006
- Hyodo, F., Inoue, T., Azuma, J.-I., Tayasu, I. and Abe, T. 2000. Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biol. Biochem. 32:653-658. https://doi.org/10.1016/S0038-0717(99)00192-3
- Ichielevich-Auster, M., Sneh, B., Koltin, Y. and Barash, I. 1985. Pathogenicity, host specificity and anastomosis groups of Rhizoctonia spp. isolated from soils in Israel. Phytoparasitica 13:103-112. https://doi.org/10.1007/BF02980887
- Jinal, H. N., Gopi, K., Prittesh, P., Kartik, V. P. and Amaresan, N. 2019. Phytoextraction of iron from contaminated soils by inoculation of iron-tolerant plant growth-promoting bacteria in Brassica juncea L. Czern. Environ. Sci. Pollut. Res. 26:32815-32823. https://doi.org/10.1007/s11356-019-06394-2
- Juan-abgona, R. V., Katsuno, N., Kageyama, K. and Hyakumachi, M. 1996. Isolation and identification of hypovirulent Rhizoctonia spp. from soil. Plant Pathol. 45:896-904. https://doi.org/10.1111/j.1365-3059.1996.tb02900.x
- Kalaiselvi, P., Jayashree, R. and Poornima, R. 2019. Plant growth promoting Bacillus spp. and Paenibacillus alvei on the growth of Sesuvium portulacastrum for phytoremediation of salt affected soils. Int. J. Curr. Microbiol. Appl. Sci. 8:2847-2858. https://doi.org/10.20546/ijcmas.2019.804.332
- Khayi, S., Cigna, J., Chong, T. M., Quetu-Laurent, A., Chan, K.-G., Helias, V. and Faure, D. 2016. Transfer of the potato plant isolates of Pectobacterium wasabiae to Pectobacterium parmentieri sp. nov. Int. J. Syst. Evol. Microbiol. 66:5379-5383. https://doi.org/10.1099/ijsem.0.001524
- Kim, H.-S., Ma, B., Perna, N. T. and Charkowski, A. O. 2009. Phylogeny and virulence of naturally occurring type III secretion system-deficient Pectobacterium strain. Appl. Environ. Microbiol. 75:4539-4549. https://doi.org/10.1128/AEM.01336-08
- Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870-1874. https://doi.org/10.1093/molbev/msw054
- Lelliott, R. A., Billing, E. and Hayward, A. C. 1966. A determinative scheme for the fluorescent plant pathogenic pseudomonads. J. Appl. Bacteriol. 29:470-489. https://doi.org/10.1111/j.1365-2672.1966.tb03499.x
- Moleleki, L. N., Onkendi, E. M., Mongae, A. and Kubheka, G. C. 2013. Characterisation of pectobacterium wasabiae causing blackleg and soft rot diseases in South Africa. Eur. J. Plant Pathol. 135:279-288. https://doi.org/10.1007/s10658-012-0084-4
- Muniaraj, M., Dinesh, D. S., Sinha, P. K., Das, P. and Bhattacharya, S. K. 2008. Dual culture method to determine the relationship of gut bacteria of sandfly (Phlebotomus argentipes) with promastigotes of Leishmania donovani. J. Commun. Dis. 40:133-138.
- Nishiyama, K. 1978. The tentative plan of simple identification method of plant pathogenic bacteria. Shokubutsu Boeki 32:283-288.
- Park, M., Kim, C., Yang, J., Lee, H., Shin, W., Kim, S. and Sa, T. 2005. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol. Res. 160:127-133. https://doi.org/10.1016/j.micres.2004.10.003
- Passera, A., Rossato, M., Oliver, J. S., Battelli, G., Shahzad, G. I., Cosentino, E., Sage, J. M., Toffolatti, S. L., Lopatriello, G., Davis, J. R., Kaiser, M. D., Delledonne, M. and Casati, P. 2020. Characterization of Lysinibacillus fusiformis strain S4C11: In vitro, in planta, and in silico analyses reveal a plant-beneficial microbe. Microbiol. Res. 244:126665.
- Portier, P., Pedron, J., Taghouti, G., Fischer-Le Saux, M., Caullireau, E., Bertrand, C., Laurent, A., Chawki, K., Oulgazi, S., Moumni, M., Andrivon, D., Dutrieux, C., Faure, D., Helias, V. and Barny, M. A. 2019. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. Int. J. Syst. Evol. Microbiol. 69:3207-3216. https://doi.org/10.1099/ijsem.0.003611
- Ryu, E. 1940. A simple method of differentiation between grampositive and gram-negative organism without staining. Kitasato Arch. Exp. Med. 17:58-63.
- Schaad, N. W., Jones, J. B. and Chun, W. 2001. Laboratory guide for identification of plant pathogenic bacteria. 3rd ed. American Phytopathological Society Press, St. Paul, MN, USA. 373 pp.
- Sgroy, V., Cassan, F., Masciarelli, O., Del Papa, M. F., Lagares, A. and Luna, V. 2009. Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasisregulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl. Microbiol. Biotechnol. 85:371-381. https://doi.org/10.1007/s00253-009-2116-3
- Silhavy, T. J., Kahne, D. and Walker, S. 2010. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2:a000414.
- Singh, R. K., Kumar, D. P., Solanki, M. K., Singh, P., Srivastva, A. K., Kumar, S., Kashyap, P. L., Saxena, A. K., Singhal, P. K. and Arora, D. K. 2013. Optimization of media components for chitinase production by chickpea rhizosphere associated Lysinibacillus fusiformis B-CM18. J. Basic Microbiol. 53:451-460. https://doi.org/10.1002/jobm.201100590
- Skowronek, M., Sajnaga, E., Pleszczynska, M., Kazimierczak, W., Lis, M. and Wiater, A. 2020. Bacteria from the midgut of common cockchafer (Melolontha melolontha L.) larvae exhibiting antagonistic activity against bacterial symbionts of entomopathogenic nematodes: isolation and molecular identification. Int. J. Mol. Sci. 21:580.
- Sneh, B., Yamoah, E. and Stewart, A. 2004. Hypovirulent Rhizoctonia spp. isolates from New Zealand soils protect radish seedlings against damping-off caused by R. solani. N. Z. Plant Prot. 57:54-58.
- Suharjo, R., Aeny, T. N., Hasanudin, U., Sukmaratri T., Krisno, R., Khoironi, T. and Safitri, D. A. 2018. Potential of endophytic bacteria as plant growth promoter and antagonist against pineapple-fungal plant pathogen in Indonesia. In: Proceeding of International Symposium on Innovative Crop Protection for Sustainable Agriculture, pp. 41-44. The United Graduate School of Agricultural Science, Gifu University, Japan.
- Suharjo, R., Oktaviana, H. A., Aeny, T. N., Ginting, C., Wardhana, R. A., Nugroho, A. and Ratdiana, R. 2021. Erwinia mallotivora is the causal agent of papaya bacterial crown rot disease in Lampung Timur, Indonesia. Plant Prot. Sci. 57:122-133. https://doi.org/10.17221/123/2020-PPS
- Suharjo, R., Sawada, H. and Takikawa, Y. 2014. Phylogenetic study of Japanese Dickeya spp. and development of new rapid identification methods using PCR-RFLP. J. Gen. Plant Pathol. 80:230-254. https://doi.org/10.1007/s10327-014-0508-4
- Trakulnaleamsai, S., Hongoh, Y., Deevong, P. and Noparatnaraporn, N. 2004. Phylogenetic diversity of bacterial symbionts in the guts of wood-feeding termites. Kasetsart J. (Nat. Sci.). 38:45-51.
- Trivedi, P., Spann, T. and Wang, N. 2011. Isolation and characterization of beneficial bacteria associated with citrus roots in Florida. Microb. Ecol. 62:324-336. https://doi.org/10.1007/s00248-011-9822-y
- Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697-703. https://doi.org/10.1128/jb.173.2.697-703.1991